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a b s t r a c t

Failure to setup a large-scale hydrological model correctly may not allow proper calibration and un-
certainty analyses, leading to inaccurate model prediction. To build a model with accurate accounting of
hydrological processes, a data discrimination procedure was applied in this study. The framework uses a
hydrological model of Alberta built with the Soil andWater Assessment Tool (SWAT) program. The model
was used to quantify the causes and extents of biases in predictions due to different types of input data.
Data types represented different sources of errors, including input data (e.g., climate), conceptual model
(e.g., potholes, glaciers), and control structure (e.g., reservoirs, dams). The results showed that accounting
for these measures leads to a better physical accounting of hydrological processes, significantly
improving the overall model performance. The procedure used in this study helps to avoid unnecessary
and arbitrary adjustment of parameters to compensate for the errors in the model structure.

© 2015 Elsevier Ltd. All rights reserved.

Software availability

SWAT program is available for use at the following URL http://swat.
tamu.edu/

1. Introduction

Physically-based, distributed hydrological models have been
widely used for water resources management and planning. They
have been extensively applied to study the impact of climate
change and landuse change on water quality and quantity, water
related activities, and adaptation measures among others (Li et al.,
2009; Faramarzi et al., 2010a, 2010b, Van Griensven et al., 2012;
Faramarzi et al., 2013; Eum et al., 2014; Xue et al., 2014). The reli-
ability of such applications depends on the accuracy of hydrological
models in representing the physical processes (Beven, 2000;

Muleta and Nicklow, 2005), correct input data, and proper model
calibration. As such, a key challenge is initially to set up an accurate
hydrological model, which correctly represents the site's actual
physical processes (Gupta and Sorooshian, 1998; Perrin et al., 2001;
Blasone et al., 2008; Moradkhani et al., 2012; Houska et al., 2014;
Guse et al., 2014; Gabriel et al., 2014).

Calibration of distributedmodels is often difficult and subjective
when there is a considerable simplification in model setup. It is
standard practice in watershed modeling studies that the physical
parameters are adjusted to achieve the optimal fit to the measured
data. However, simplification of themodels, especially in large scale
watersheds (where a considerable heterogeneity exist in climate,
vegetation, soil, physiography, and management activities), might
result in a wrong parameter estimation (Schuol et al., 2008b;
Faramarzi et al., 2009). In large scale models where a vast num-
ber of adjustable physical-parameters are allowed to vary within a
broad range of values, a seemingly good simulation can be obtained
with erroneous parameter values (Abbaspour et al., 2007). In other
words, wrong model structure and inappropriate input data can be
compensated by unrealistic model parameters. Such models could
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produce misleading results in scenario analyses, even though
typical performance criteria are satisfied during calibration. One
way to detect these over calibration problems is by validation of the
model for a reasonable time period where major hydrological
events (e.g., wet years, dry years) are presented.

A correct model setup, accurately representing the actual hy-
drological processes, can limit uncertainty in parameter estimation.
In literature, to limit uncertainties in parameter estimation, various
measures through automated calibration techniques have been
examined. These include multi-variable calibration procedure
(Gupta and Sorooshian, 1998; Xie et al., 2012; Qiao et al., 2013;
Samuel et al., 2014), use of multiple calibration sites rather than
only catchment integrated behavior (Abbaspour et al., 1999, 2007;
Cao et al., 2006; Schuol et al., 2008a, 2008b), a multi-objective
formulation by including different variables in the objective func-
tion (Gupta and Sorooshian, 1998; Madsen, 2003; White and
Chaubey, 2005), and use of various techniques to increase the
computational efficiency of the large scale hydrological models
(Wu et al., 2013; Ercan et al., 2014). Although the schemes are
beneficial in limiting uncertainties in the predictions, a more reli-
able result can be achieved through building an accurate model.
Building a correct model, especially in large scale and complex
watersheds, is an important practice to represent correct processes
inside a watershed. A correct model is one that adheres to the
principle of “correct neglect”, where only unimportant processes
are neglected in the model and all important processes should be
included. Therefore, it is inevitable that large scale models should
go through careful data discrimination scheme to ensure most of
the important processes are represented prior to calibration. These
include: (i) gathering and compiling appropriate input data (e.g.,
climate data in mountainous regions); (ii) including management
control structures that can disrupt natural processes (e.g., dams
that regulate downstreamwater flow); and (iii) incorporating local
knowledge about the natural complexity and anthropogenic
changes into watershed models. These are all key factors that can
reduce the uncertainty in model predictions and avoid unnecessary
and arbitrary adjustment of the parameters.

Overall, the majority of researchers have focused on elaboration
of the importance of robust calibration schemes in parameter
estimation (e.g., Joseph and Guillaume, 2013) and prediction un-
certainty, while much fewer studies have addressed proper model
setup and choice of appropriate input datasets. Later group are
those that focused on modifying the existing climate datasets to
better represent the effect of altitude on precipitation (Masih et al.,
2011; Galvan et al., 2014) and those that examined the effect of
input data quality and quantity on parameter estimation andmodel
calibration (Getirana et al., 2011; Strauch et al., 2012; Yalew et al.,
2013; Gabriel et al., 2014; Rouholahnejad et al., 2014; Yen et al.,
2014; Abbaspour et al., 2015; Leta et al., 2015).

With an area of about 660,000 km2, Alberta encompasses 17
river basins that principally originate from the east slopes of the
Canadian Rocky Mountains and the majority drain east to Hudson
Bay through the provinces of Saskatchewan and Manitoba and
north to the Arctic Ocean. The heterogeneous hydro-climatic con-
ditions and the diverse land management practices in combination
with the scarcity of data, especially in the northern remote areas and
western mountainous region, make hydrological modeling chal-
lenging in this region. To the best of our knowledge a high resolution
and province-wide hydrological model has not been developed for
Alberta. Most of the previous studies in Alberta have been con-
ducted at a catchment (e.g., Kienzle et al., 2012; Marshall, 2014) or
river basin (e.g., Islam and Gan, 2014; Eum et al., 2014) scale.

The model of choice for this project was “Soil and Water
Assessment Tool” (SWAT) (Arnold et al., 1998). SWAT has been
developed to quantify the impact of land management practices

and climate on water, sediment, and agricultural chemical yields in
large complex watersheds with varying soils, landuses, and man-
agement conditions over long periods of time. The program,
therefore, lends itself easily to climate and landuse change ana-
lyses. SWAT is a valuable watershed-scale management tool and we
chose this program for our purposes because: i) it integrates many
components such as hydrology, climate, nutrient, soil, sediment,
crop, pesticide, and agricultural management, ii) it has been suc-
cessfully applied worldwide in many different climate and landuse
situations (Arnold et al., 1999; Gosain et al., 2006; Schuol et al.,
2008a,b; Rouholahnejad et al., 2014; Abbaspour et al., 2009,
2015), iii) the program is actively maintained and continuously
updated with new and up-to-date knowledge of watershed pro-
cesses, and iv) many side programs are written for SWAT from
calibration and uncertainty analysis to graphic packages for visu-
alization and animation of the results. Hence, over a 50-year period,
a global consensus is built around the accuracy and usefulness of
the program as there exist over 3000 scientific publications where
SWAT has been used to address numerous watershed issues
(Gassman et al., 2007, 2010).

We used the SWAT hydrological model of Alberta as an example
to demonstrate that proper model setup could produce more ac-
curate model outputs and represent most of the natural and
anthropogenic processes. However, one hypothesis would be how a
model with a better performance would guarantee that it will be
actually the best option after calibration. We address in this paper
the fact that building a correctmodel is a key stepprior to calibration
to avoid compensation through subjective and challenging param-
eter estimation and this will provide the best performance model.

Objectives of this paper are: (i) to build various SWAT projects to
test the effects of including alternative climate and geo-spatial
datasets available from global and regional sources; (ii) to eval-
uate the performance of the model predictions using combination
of multiple datasets from different sources, (iii) to define the pro-
cedures by which raw datasets are evaluated for inclusion or
exclusion in the model; and (iv) to calibrate and validate all of the
model scenarios for the Athabasca River basin as an example hy-
drological region, thereby allow us to test how an accurate model
will perform best after calibration. It is important to point out that
the above SWAT models are tested against each other prior to
calibration, as over calibration and over fitting of model parameters
would mask the input data andmodel structure effects and will not
allow a proper discrimination of initial model setups (Dile and
Srinivasan, 2014; Abbaspour et al., 2015).

2. Materials and methods

2.1. Study area

Alberta, with an area of about 660,000 km2, is located between
49e60 �N and 110e120 �W where altitude varies from 3747 m
(Mount Columbia) to 152 m (Slave River-Wood Buffalo National
Park) (Fig. 1a). Geographically, the province spans >1200 km from
north to south and large-scale climate anomalies, originating from
Pacific Ocean, have a considerable influence on climate diversity
(Lapp et al., 2013). Air temperatures can drop to as low as �54 �C
during the winter (northern Alberta), and rise to as high as 40 �C
during the summer (southern Alberta). Average annual precipita-
tion ranges from300mm in the southeast to 600mm in the foothills
of the Rocky Mountains (AENV-GA, 2008; Mwale et al., 2009).

The province has 17 river basins (Fig. 1a; AENV-GA, 2008) with
the northern rivers of the province having comparatively larger
areas and therefore higher discharge rates than the southern rivers
that flow through regions that receive much lower annual precip-
itation. For instance, the average flow of Peace River in the north is
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Fig. 1. Map of study area presenting geographic distribution of the main river basins, hydrometric stations, dams-reservoirs and the modeled sub-basins (a); and distribution of the
meteorological stations in different river basins of Alberta (b, c). Different colors show the number of missing daily data during 1983e2007 in each station. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



2161m3 s�1 and the peak flow can exceed 5000m3 s�1 at the outlet
of Peace-Slave river basin, whereas the peak flow at the outlet of
South Saskatchewan river basin in the south can reach 1200 m3 s�1

(see Supplementary Table A.1) (AENV-GA, 2006; AENV-GA, 2008).
Similarly, landuse in each region varies considerably (see
Supplementary Table A.2). Importantly, a large portion of the
prairie landscape in the south and eastern parts of the province
have a drainage network that is poorly developed resulting in many
closed depressional areas (potholes). In addition, individual
farmers are allowed to capture rainwater and snowmelt (sloughs)
for on-farm storage resulting in undocumented water impound-
ments. Together, these natural and anthropogenic formations in-
fluence the contribution of precipitation to streamflows as they
prohibit the drainage to the receiving stream. The Prairie Farm and
Rehabilitation Administration (PFRA, 2012) of Agriculture and Agri-
Food Canada (AAFC) has delineated and characterized these areas
which are so called “non-contributing areas”. In southern Alberta,
the landuse is primarily medium- and large-scale agriculture;
however, there is not enough rainfall and moisture to naturally
sustain demands of agricultural crops in much of the region. As
such, substantial dams, diversion channels, off-stream reservoirs,
and irrigation systems have been constructed. Thirteen organized
irrigation districts receive large quantities of water which are
diverted from the tributaries of the South Saskatchewan River,
primarily the Oldman (St. Mary, Waterton and Belly) and Bow
Rivers (Sauchyn et al., 2011; AARD, 2013).

2.2. SWAT hydrologic model

We used the SWAT2012 model to simulate streamflow. SWAT
model is a process-based, spatially distributed model that operates
on a daily time step (Arnold et al., 1998). Spatial parameterization of
the SWAT model is performed by delineating a watershed into sub-
basins based on topography and into Hydrologic Response Units
(HRUs) according to soil, landuse, and slope characteristics. SWAT
simulates the watershed hydrology in two phases: 1) the land
phase of the hydrologic cycle, which calculates the water balance of
each HRU at a given time step, and 2) the routing phase, which
routes the water through river network towards the basin outlet.
The model uses daily climate data, such as precipitation, minimum
and maximum temperatures. It assigns the nearest weather station
to the centroid of each sub-basin to that sub-basin. It simulates
streamflow, soil water, ground water recharge, potential and actual
evapotranspiration, plant water uptake, transpiration, soil and
canopy evaporation, and other hydrological components daily. A
mass balance equation is used in SWAT to account for the snow
hydrology based on whether the equivalent water content of the
snowpack increases with more snowfall or decreases with snow-
melt and sublimation. A weather generator module is accommo-
dated to generate daily climate data or to fill in the gaps in
measured records. Impoundments play an important role in water
balance of a sub-basin. Four types of water bodies are simulated in
SWAT: ponds, wetlands, potholes, and reservoirs. Water flows from
sub-basin into these water bodies. A water balance equation is
solved to initiate water impoundment which is a function of total
inflow (e.g., runoff entering from the sub-basin, rainfall, ground
water contribution) and total outflow from the water bodies (e.g.,
evaporation, seepage). Reservoirs are located on the main channels
and receive water from all upstream sub-basins. The magnitude of
water outflow from the reservoirs (dams) is defined by user. A more
detailed description of the model is given by Neitsch et al. (2011).

2.3. Data and model setup

There are different sources of error in hydrological modeling.

The most important sources are input data (e.g., climate data or
spatial data), conceptual model (e.g., process simplifications), and
the anthropogenic changes through management practices
(Abbaspour et al., 2007). The first source can be accounted for by
using the most relevant datasets through initial testing. The second
and third sources cannot be quantified unless themodeler develops
a clear understanding of the region of interest and the most
important processes occurring across the region. While using
multiple models of different complexities can help to identify key
processes, this approach is costly and time consuming, especially
for detailed large-scale studies. Instead, our approach was to use
different SWAT model structures, in combination with local expert
knowledge and testing of different data sources. This was an effi-
cient way to model the study area and related processes.

Various data types, representing different sources of error, were
used in this study to qualify their hydrological responses through
simulation of the streamflow (Table 1). The results were compared
with historical measured records at 130 hydrometric stations. A
total of ten SWAT projects (S1eS10), corresponding to ten different
datasets were constructed and the simulated monthly river dis-
charges were compared with that of measured records obtained
from the Environment Canada (http://www.ec.gc.ca/rhc-wsc/) for
the period of 1986e2007. Here we give a brief description of the
SWAT projects, data, and scenarios:

To build the hydrological model of Alberta (S1), we used the
digital elevation model (DEM) at 90 m resolution (SRTM, Jarvis
et al., 2008) for sub-basin delineation. A detailed stream network
was initially delineated using a 10-m resolution DEM (AltaLIS,
http://www.altalis.com/) and used for watershed delineation. Us-
ing a threshold drainage area of about 200 km2 a total of 2255 sub-
basins were delineated for the study area (Fig. 1a). With this
threshold we made a balance between the resolution of the avail-
able data and the practical SWAT project size. The landuse map was
obtained from the GeoBase Land Cover Product. (http://www.
geobase.ca/geobase/en/data/landcover/csc2000v/description.
html), which has a resolution of 30 m and distinguishes 36 landuse
classes for Canada and 23 classes for our study area (see
Supplementary Table A.2). The raw soils datawas obtained from the
Agriculture Agri-Food Canada, Soil Landscapes of Canada V3.2
(http://sis.agr.gc.ca/cansis/nsdb/slc/index.html) and modified to
meet the input requirements of SWAT. This map represents a total
of 364 soil types for Canada and 90 soil types for our study area,
including the SWAT required physical parameters at a maximum of
nine soil layers. A dominant soil, landuse, and slope were consid-
ered to characterize each sub-basin in this study. Provincial climate
data from about 300 meteorological stations (MS) (Fig. 1b,c) were
acquired from Environment Canada at a daily time step for our
study period (1983e2007).

To elaborate on the climate data uncertainty, four additional
SWAT projects (S2eS5) were built using gridded climate datasets.
The gridded climate datawere from the four widely utilized sources
including that of the National Centers for Environmental Pre-
diction's Climate Forecast System Reanalysis (CFSR), which pro-
vides daily climate data at a 0.3-degree grid resolutionwith a global
coverage; the CRU TS2 (named CRU1 in this study) and CRU TS3.21
(named CRU2 in this study) from the Climate Research Unite (CRU),
which both provide monthly climate data at 0.5-degree grid reso-
lution with a global coverage; and the Natural Resources Canada
(NRCan), which supplies daily gridded climate data at
10 km � 10 km resolution for Canada (see Table 1 for more
specification).

To test the effect of soil and landuse data we built two other
projects (S6 and S7). For these projects we replaced the landuse
map used in S1 with the global landuse map of the US Geological
Survey (USGS) (Table 1, S6) and the global soil map of the Food and
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Table 1
Global and regional data sources used in this study.

Error sources Scenarios/dataset Time span Resolution Time step Region Nr. of stations/grids
in study area

Reference

Input data Climate S1: Metrological
stations

1983e2007 e Daily Local 320 Government of Canada, Path:
http://climate.weather.gc.ca/

S2: CFSR 1979e2010 0.3� grid Daily Global 1097 Fuka et al., 2013; Path: http://globalweather.tamu.edu
S3: CRU1a 1900e2000c 0.5� grid Monthly Global 771 New et al., 2000; Mitchell and Jones 2005
S4: CRU2b 1900e2012 0.5� grid Monthly Global 771 Harris et al., 2014
S5: NRCAN 1910e2010 10 km � 10 km Daily Regional/Canadian 7543 McKenney et al., 2011

Digital maps S6: USGS Landuse/land
cover map

1993 1 km � 1 km (1:1,000,000) e Global 100% coverage USGS Global Land Use Land Cover Characterization
(GLCC) database with a spatial resolution of 1 km and
distinguishing 24 landuse/land cover classes. Path:
http://edcsns17.cr.usgs.gov/glcc/glcc.html

S7: FAO-Soil map 2005 10 km � 10 km (1:10,000,000) e Global 100% coverage Food and Agriculture Organization of the United
Nations (FAO, 1995), which provides data for 5000
soil types comprising two layers (0e30 cm and
30e100 cm depth) at a spatial resolution of 10 km.

Model conceptual S8: Potholes 2012 Watershed (delineated for each
hydrometric station)

e Regional/Canadian 100% coverage Prairie Farm and Rehabilitation Administration (PFRA),
Agriculture Agri-food Canada (AAFC), 2012.

S9: Glaciers 1985e2005 River Basin Long-term
monthly

Regional/Global 100% coverage Raup et al., 2007; Marshall, 2014.

Management measures S10: Reservoir/lake Since compilation e Daily Local 15 main
reservoirs-lakes

AESRD, Alberta Environment Sustainable Resources
Development: measured data at hydrometric stations.
See Supplementary Table A.4.

Multiple dataset S11: S1 þ S10 þ CFSR
temp. replaced

1983e2007 e Dailyemonthly Local-regional e e

S12: S11 þ FAO soil
was replaced

1983e2007 e Dailyemonthly Local-regional e e

S13: S11 þ S8 þ S9 1983e2007 e Dailyemonthly Local-regional e e

a CRU TS2.
b CRU TS3.21.
c SWAT weather generator (Neitsch et al., 2011) was used to fill the gaps between 2001 and 2007.
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Agricultural Organization (FAO, 1995) of the United Nations (S7).
Additionally, three more SWAT projects (S8, S9, and S10) were

built to simulate non-contributing areas and potholes (S8), to
incorporate glaciers (S9), and to include regulatory dams-reservoirs
and lakes (S10) (dataset information available in Table 1). To acquire
this information, we held several expert meetings with relevant
governmental organizations to discuss the factors that may alter
our hydrological assessment and to understand the unique condi-
tions of each river basin in Alberta.

In this study, we used the Hargreaves method to calculate the
potential evapotranspiration; the Soil Conservation Service's curve
number method to estimate surface runoff; and the variable stor-
age routing method for the simulation of the channel processes.
The aim of this study was to assess the performance of different
input datasets in hydrological modeling prior to calibration. To
compare the gridded climate datasets with the observed records
we computed the following statistics for each sub-basin, river ba-
sin, and region accounting for the seasonal variation in the statistics
during 1983e2007. The statistics used in this study were: linear
correlation coefficient (CC), such that �1 � CC � 1 (unitless), mean
absolute error (MAE), which ranges from 0 to ∞ with lower values
indicating greater accuracy (mm and �C), and percent bias (PBias)
with the optimal value of 0 (unitless):

CC ¼
Pn

i¼1½ðxi � xÞðyi � yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

h
ðxi � xÞ2

iPn
i¼1

h
ðyi � yÞ2

ir (1)

MAE ¼ 1
n

Xn
i¼1

jðxi � yiÞj (2)

PBias ¼ 100�
Pn

i¼1ðxi � yiÞPn
i¼1 yi

(3)

where x is the gridded dataset and y is the meteorological gauge
dataset.

2.4. Model evaluation

The streamflow was simulated for the 1983e2007 period
considering a three-year warm-up period (excluded from the
analysis) to equilibrate the simulated physical processes tomitigate
the unknown initial conditions. We compared the measured and
simulated monthly discharges at 130 hydrometric stations (Fig. 1a)
using a modified version of the efficiency criterion defined by
Krause et al. (2005):

f ¼
n
jbj R2 if jbj � 1; jbj�1 R2 if jbj>1

o
; (4)

where, R2 is the coefficient of determination between measured
and simulated signals and b is the slope of the regression line. In
large scale multi-site hydrological studies, where the stations' ef-
ficiency criteria are averaged for the watersheds, the bR2 (ranging
from 0 to 1) is widely used as a more efficient index compared to
other criteria such as Nash-Sutcliffe Efficiency (NSE) or R2. The NSE
is a normalized statistic that determines the relative magnitude of
the residual variance compared to the measured data variance and
varies between -∞ and 1 (Nash and Sutcliffe, 1970). The NSEmay be
dominated by a few poorly simulated stations (with large negative
values). A modified version of NSE has been recommended by
Mathevet et al., 2006 in large scale studies, which varies
between �1 and þ1 and generates less skewed distribution. Simi-
larly, the R2 statistics represents the trend of the simulated results,

but not the closeness to the measured data. In our simulations, we
also calculated the bounded NSE (BNSE) using Eq. (5) (Mathevet
et al., 2006) and used this criterion as an additional information
to evaluate our province-wide model performance.

BNSE ¼ NSE
2� NSE

(5)

In addition, we showed the average R2 and NSE for the whole
study area, as these are commonly used criteria for hydrological
studies.

To test the effect of parameter adjustment (i.e., calibration) on
scenario selection, we performed calibration only for the Athabasca
River basin. The Athabasca River is the second largest river basin in
Alberta (see Supplementary Table A.1,2 and Fig. 1). It originates
from the glaciers of Rocky Mountains in Jasper National Park, has a
drainage area of about 133,000 km2, and flows for over 1230 km
from the head waters to join Lake Athabasca in the east. The mean
annual discharge rate of the basin is about 661 m3 s�1. The river
flow regime is contingent on the seasonality of climate, reaching its
minimum in winters and its maximum in warm summers, when
snow and glacial melt waters from the river's head waters combine
with runoff from localized snowmelt and rainfall throughout the
basin. Furthermore, Lesser Slave Lake (LSL) significantly alters the
hydrological regime of the downstream on the river while non-
contributing areas (sloughs for on-farm storage) in upstream LSL
serves as buffers for water flow in the region. The Athabasca River
basin is a reasonably good choice for calibration since it represents
most of the scenario attributes defined in this study (i.e., S1eS13,
see Table 1).

We calibrated all of the model scenarios using the monthly data
of 40 hydrometric stations in the basin. For calibration we ran a
sensitivity analysis using the Sequential Uncertainty Fitting pro-
gram (SUFI2) (Abbaspour et al., 2007; Faramarzi et al., 2009) to find
the most sensitive parameters to river discharges. We found 22
parameters were generally sensitive to river discharges
(Supplementary Table A.3). The parameters were further differen-
tiated based on soil and landuse types to better represent the geo-
spatial and hydrological characteristics (see Faramarzi et al., 2009).
The parameterization was further regionalized for highlands,
middle regions and lowlands in the basin, resulting in a total of 300
parameters. To perform parameter updates we provided a range for
each parameter from which 500 Latin Hypercube samples were
drawn and fed into the model for simulation. The parameter ranges
were limited to a physically meaningful range (Neitsch et al., 2011;
Abbaspour et al., 2007) to prevent over calibration of the models.
We therefore performed 500 model runs for each model scenario
and calculated the bR2 for each individual station. The best simu-
lation was found using the best parameter set sample which pro-
duced the largest bR2 in the river basin.

3. Results and discussion

3.1. Climate data

The observed meteorological station (MS) climate data collected
across the province varied widely in the number of missing data.
Specifically, most MS stations in the northern regions and those
located in the western mountainous regions of the study area had a
large number of missing days (Fig. 1b,c). Therefore, we used the
weather generator of SWAT to fill in the gaps using the closest data-
rich stations and generated daily time series for the sub-basins
where climate stations were sparse. This resulted in precipitation
estimates ranging from 266 to 400 mm yr�1 in the southern and
northern regions to 600e814 mm yr�1 in western mountainous
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regions (Fig. 2a). Moreover, the 25-year mean temperature esti-
mation using MS data varied from �2 �C to �1 �C in the northern
parts of the province to a high of 5 �Ce8 �C in the southern regions
(Fig. 2f). The mean annual temperatures in the Rocky Mountains
were above 0 �C using MS dataset, which are higher than the re-
ported range of �7 �C to 0 �C by AENV-GA (2008).

Simulations using 4 other gridded datasets, produced differ-
ences in the spatial pattern of climate data, which also differed from
the MS data results. The mean annual precipitation of the CFSR
dataset (Fig. 2b) was significantly larger than observed MS data
(Fig. 2a), ranging from 500 to 1764 mm yr�1 in most parts of the

study area. Other gridded data (CRU1-Fig. 2c; CRU2-Fig. 2d; NRCan-
Fig. 2e) produced similar spatial patterns, with the greatest pre-
cipitation occurring in the western mountainous areas
(600e1100 mm yr�1) and the lowest precipitation occurring in the
southern and northern plains (280e400 mm yr�1).

The long-term mean annual temperatures were within �4 �C to
5 �C for all datasets (Fig. 2fej). While the spatial variation of the
temperatures were generally consistent in all datasets, our statis-
tical analysis showed temporal differences within and between the
datasets (Table 2a,b). To better understand the statistical perfor-
mances of gridded climate data relative to the observedMS, we also

Fig. 2. Spatial distribution of the 25year (1983e2007) average precipitation (mm; left) and temperature (�C; right) across study area from the observed MS data and the four
gridded climate datasets.
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Table 2
Seasonal statistics of the gridded compared to the observed MS data for precipitation (a) and temperature (b) during 1983e2007.

Statistic Winter Spring Summer Fall Year

CFSR CRU1 CRU2 NRCan CFSR CRU1 CRU2 NRCan CFSR CRU1 CRU2 NRCan CFSR CRU1 CRU2 NRCan CFSR CRU1 CRU2 NRCan

(a)
North: Athabasca, Peace/Slave, Hay, Buffalo, Lake Athabasca, Liard, Great Slave Lake
CC 0.09 0.13 0.14 0.17 0.45 0.48 0.48 0.69 0.49 0.28 0.27 0.63 0.17 0.13 0.12 0.15 0.38 0.28 0.28 0.45
MAE 72.72 18.33 18.6 19.79 72.49 33.76 33.68 27.16 58.83 43.57 40.93 32.47 65.74 24.98 25.1 24.99 67.45 30.16 29.58 26.10
PBias 151.7 1.51 5.81 18.78 55.9 �6.67 �5.39 �12.3 16.96 0.17 �1.32 �2.86 96.17 3.4 5.66 9.52 56.13 �1.74 �1.03 �1.36
Middle: Beaver, North Saskatchewan, Battle, Red Deer, Sounding
CC 0.35 0.36 0.34 0.6 0.56 0.48 0.45 0.8 0.52 0.34 0.35 0.76 0.53 0.56 0.53 0.7 0.52 0.37 0.38 0.77
MAE 67.12 20.39 20.11 14.77 100.9 40.54 41.64 25.33 55.54 45.06 46.39 28.42 56.77 19.42 19.88 14.47 70.07 31.35 32.01 20.75
PBias 143.3 14.19 10.91 1.97 63.71 8.8 6.1 �5.2 10.79 0.48 �0.41 �5.42 112.2 5.62 6.75 �0.42 55.73 5.07 3.57 �4.27
South: Bow, Oldman, South Saskatchewan, Milk
CC 0.42 0.46 0.32 0.65 0.63 0.55 0.56 0.77 0.7 0.68 0.72 0.82 0.56 0.58 0.58 0.74 0.63 0.57 0.56 0.78
MAE 50.96 26.35 26.67 18.68 73.14 48.4 48.8 34.29 49.02 39.87 37.48 27.8 44.76 25.71 25.31 19.17 54.47 35.08 34.57 24.99
PBias 99.57 8.37 1.09 6.02 33.8 0.54 �1.44 �1.54 �2.7 �0.97 �4.54 �5.05 80.71 4.83 5.07 4.88 35.46 1.45 �1.52 �1.02

(b)
North: Athabasca, Peace/Slave, Hay, Buffalo, Lake Athabasca, Liard, Great Slave Lake
CC 0.11 0.18 0.18 0.13 0.46 0.46 0.43 0.46 0.44 0.5 0.44 0.5 0.04 0.01 0.05 0.06 0.27 0.29 0.30 0.28
MAE 2.39 2.26 2.19 2.3 1.62 1.43 1.49 1.55 1.28 0.96 1.04 0.96 2.29 2.27 2.25 2.27 1.90 1.73 1.74 1.77
PBias �1.58 1.53 1.14 0.27 �9.13 �6.82 �7.23 �9.22 �1.78 �1.92 �2.59 �0.82 �4.6 7.27 25.33 20.65 �21.31 �1.83 11.88 19.40
Middle: Beaver, North Saskatchewan, Battle, Red Deer, Sounding
CC 0.66 0.66 0.64 0.68 0.69 0.67 0.64 0.68 0.77 0.73 0.74 0.75 0.69 0.68 0.66 0.69 0.63 0.63 0.60 0.64
MAE 1.25 1.72 1.77 1.49 1.69 1.84 1.93 1.75 0.84 0.94 0.98 0.81 2.72 2.88 2.93 2.74 1.63 1.85 1.90 1.70
PBias �5.82 13.12 14.6 10 �2.95 �5.12 �5.55 �3.04 6.23 0.97 �0.02 2.02 �10.4 �0.2 5.32 �5.63 �10.56 7.58 10.98 9.46
South: Bow, Oldman, South Saskatchewan, Milk
CC 0.82 0.79 0.78 0.83 0.8 0.78 0.73 0.79 0.84 0.83 0.83 0.8 0.74 0.72 0.71 0.73 0.81 0.78 0.74 0.79
MAE 1.15 1.48 1.6 1.16 1.18 1.28 1.44 1.25 0.98 1.03 1.13 0.88 1.6 1.12 1.43 1.21 1.23 1.23 1.40 1.13
PBias �6.9 20.05 24.89 10.22 �4.99 �11.6 �13.7 �9.87 9.83 �1.04 �2.74 0.69 53.15 57.78 �72.3 �21.1 20.61 �39.92 �54.74 �20.75
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illustrated seasonal variation of precipitation and temperature at
2255 sub-basins (Fig. 3). In general, the CC statistics of both tem-
perature and precipitation in all databases increased from north to
south in all seasons. The principal reasons for this trend are the
denser observational stations and fewer missing data for the
southern watersheds.

Statistical analysis of the CRU1 and CRU2 (Fig. 2c,d; Fig. 2h,i;
Table 2a,b) datasets showed the performances of these two data-
sets were not consistent and varied depending on the season and
climate variable. Across the Alberta watersheds, the CRU2 dataset
did not perform better than CRU1, as indicated in a global study by
Harris et al. (2014). The CC of precipitation using CRU2 indicated a
slightly stronger relationship in spring and summer seasons and
weaker relationship in winter and fall seasons compared to that of
CRU1. The CC of temperature in CRU2 was slightly smaller than that
of CRU1 for all seasons.

The NRCan precipitation data (Fig. 2e; Table 2a) showed the
strongest relationships (highest CC) with observed MS data in all
sub-basins, ranging from 0.15 to 0.74 for the fall and winter seasons
and from 0.63 to 0.82 for the spring and summer seasons. Likewise,
the temperature CC (Fig. 2j; Table 2b) was the greatest for the
NRCan dataset, ranging from 0.06 to 0.83 in cold seasons and from
0.46 to 0.80 in warm seasons. Although the CC was generally the
highest for NRCan, the MAE and PBias were different between
seasons and watersheds.

Comparison of the performance of the gridded data in this study
showed that the CFSR dataset performed well for temperature (a
higher CC and lower MAE and PBias), especially in the middle to
southern data-rich watersheds (Table 2b). In hydrological
modeling, the accuracy of temperature data is important because it

has direct effect on simulation of snow fall in cold seasons and
snowmelt in warm seasons. Snow fall has significant but not an
immediate contribution to streamflow. In upstream highlands,
precipitation in the form of snow results in a temporal shift of the
hydrograph, such that contributions to river flows occur in later
seasons (spring and summer) whenwarmer temperature melts the
snow. Occasionally, we find large PBias values in southern water-
sheds in the fall season because near-zero temperature values
(Fig. 3h) are used as a denominator in Eq. (3). To overcome this
problem we added 1 �C to all of the fall temperature data in these
watersheds. The results were improved and the statistics were
comparable with other data (Table 2b).

3.2. Scenario results

3.2.1. Comparison of SWAT model performance using various
datasets

We evaluated streamflow in 10 different scenarios (S1eS10;
Table 1) using SWAT. River dischargemeasured at each hydrometric
station reflects system inflows (e.g., precipitation), outflows (e.g.,
evapotranspiration), water storage changes (e.g., in lakes and
groundwater), and management measures (e.g., dam regulation)
throughout the entire upstream area (Hunger and Doll, 2008).
Therefore to improve performance of the streamflow simulations,
the input data used for model setup, and a multi-gage evaluation
procedure should characterize as many of the natural and anthro-
pogenic processes in the catchment as possible. The MS simulation
result (S1) at a monthly time step yielded a desirable performance
with a bR2 of up to 0.65 in the southern watersheds (Fig. 4, S1).
However, the results showed a low bR2 (ranging from 0 to 0.17) for

Fig. 3. Average monthly precipitation and temperature by seasons during 1983e2007 using the observed daily MS data.
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Fig. 4. Model performance of different scenarios for monthly streamflows at 130 hydrometric stations. Different colors show the bR2 of the stations from the comparison of the
measured versus simulated discharges during 1986e2007. The BNSE and R2 are the mean values across the study area. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



most of the northern watersheds. This poor performance was ex-
pected because the quantity and quality of the MS data were quite
poor for these regions of the study area. In general, the average
provincial BNSE and R2 were about �0.15 and 0.29, respectively in
this scenario.

Replacing the meteorological data with the CFSR dataset, the
model performance was improved (Fig. 4, S2). However, the
improvement was not consistent throughout the study area. The
bR2 was improved in the central, northern and mountainous re-
gions (with a maximum of about 0.54) but it decreased in the
south-eastern watersheds (from a maximum of 0.65 under S1 to a
maximum of only 0.54 under S2). At the provincial scale, the mean
BNSE was decreased from �0.15 under S1 to �0.28 under S2, while
the R2 was increased from 0.29 under S1 to 0.32 under S2. A
comparison of the simulatedmonthly discharges with the observed
records in S2 showed over estimation of the streamflow for most of
the stations where bR2 increased. Improvement of the bR2 in this
scenario were primarily driven by significant improvements in the
trend of the simulated data (R2) rather than the magnitude (b). This
implies that large precipitation estimates of CSFR dataset (Fig. 2b)
did not correspond well with the simulation of streamflows and
caused an over estimation of the discharges in most of the hydro-
metric stations (with a small b). However, the CFSR temperature
time series made a significant overall improvement in trend
simulation (with large R2). The performance of the CFSR tempera-
ture dataset in streamflow simulation is shown in the next section.
Previous studies evaluating the utility of CFSR data for hydrological
modeling have been conducted on one, or at most, a few small
watersheds (Najafi et al., 2012; Smith and Kummerow, 2013; Fuka
et al., 2013; Dile and Srinivasan, 2014). In this study we have
evaluated how the CFSR dataset performs across a broad range of
catchments, representative of diverse climatic and hydrological
conditions.

Using either of the two CRU datasets (CRU1eSupplementary
Fig. A.1; S3 or CRU2-Fig. 4, S4) resulted in poor simulations. The
bR2 values decreased for most of the hydrometric stations
compared to S1. The average BNSE and R2 decreased to about �0.64
and 0.11 for S3 and -0.45 and 0.14 for S4, respectively. Such low
performance in streamflow simulation is in agreement with the
MAE and PBias statistics (Table 2a,b), where the CRU1 and CRU2
datasets performed undesirable in most of the watersheds in the
province.

The NRCan dataset (S5), which had the highest spatial resolution
and a desirable statistical performance (Table 2a,b), did not produce
the best performance for streamflow simulation. In S5, the average
BNSE and R2 of the study area were �0.33 and 0.27, respectively
(Fig. 4). Analyses showed that both R2 (trend) and b (closeness)
decreased for most of the stations under this scenario when
compared with S1.

Using different spatial maps, and related physical properties,
may improve biases in streamflow prediction (S6 and S7). However,
the use of the USGS global landuse map (S6) and the FAO global
soils map (S7) did not significantly improve the simulation results.
In scenarios we expect improvement not only in the tributaries and
headwaters but also inmain streams and northernwatersheds. The
FAO soils map resulted in a slightly better mean R2 (0.31) but a
smaller mean BNSE (�0.40) for the study area, when compared to
S1. The dominant landuse and dominant soil options were selected
in this study to characterize the SWAT sub-basins; thus a more
substantial change could occur if the simulations were conducted
at HRU level, where more of the spatial resolution would be
captured by the model.

Apart from climate data and geo-spatial maps, which are usually
considered the major sources of error, large non-contributing areas
in the southern portion of our study area were found to have

considerable influences on streamflow predictions. It has been re-
ported that the pothole topography and depressional areas (both
natural and anthropogenic) in the southern prairies generally result
in low runoff coefficients and water yields; however, the contrib-
uting areas may fluctuate greatly between wet and dry periods
(Shaw et al., 2012; Kienzle and Mueller, 2013). Data from PFRA-
AAFC (2012) was used to map potholes and sloughs in the south-
ern prairies (Fig. 4 S8, darker shading indicates increasing share of
non-contributing areas). Inclusion of this data and simulation of
related physical processes considerably improved the simulation
results for the affected areas. It must be pointed out that simulation
of potholes allowed apportioning of the stored water in the im-
poundments into evaporation and infiltration to ground water. As
such, the streamflow simulation for the hydrometric stations
located at Beaver, North Saskatchewan, Battle, RedDeer, and Old-
man river basins. However, for the province as a whole, inclusion of
non-contributing areas did not significantly enhance our simula-
tion with a mean BNSE of only �0.39 and an R2 of 0.31.

The effect of including melt water runoff from glacierized sub-
basins of the Rocky Mountains was also examined as this can
significantly affect the hydrological regime of the downstream sub-
basins, especially in warmer seasons and drier years. Disregarding
these influences can result in erroneous parameter estimation.
Glacial contribution to streamflow is not generally measured in
Rocky Mountain headwater streams e as such, the long-term
monthly glacial contribution to streamflow was estimated using
data from Marshall (2014) for each individual river basin and
distributed within the tributaries using the percent coverage of the
glaciers obtained from the Global Land Ice Measurement from
Space (GLIMS) map (see Table 1). The data were fed into the SWAT
model through point sources in the upstream head waters where
they were close to the glaciers. Although the yearly fluctuations of
the melt water runoff were not considered in this study, the results
were improved in some of the western hydrometric stations which
were influenced by the glaciers. The total average BNSE and R2 were
improved to �0.12 and 0.31, respectively (Fig. 4, S9).

Finally, the effect of including major water management mea-
sures on streamflow simulation was examined. The monthly out-
flows of 14 dams-reservoirs (Supplementary Table A.4), which are
mainly constructed on southern streams and managed to regulate
downstreamflows, were fed into the SWAT model. In addition,
there are several small lakes and natural reservoirs in Albertawhich
are located on the rivers and tributaries. These small lakes have
negligible influences on downstreamflow regime. The LSL is the
largest natural lake in the province, which significantly alters the
hydrological regime of the downstream on the Athabasca River. We
included this lake and treated it as a reservoir in the model. Overall,
the S10 scenario considered the effect of 14 dams-reservoirs plus
the LSL on Athabasca River. The bR2 was improved by up to 0.99 in
some hydrometric stations located downstream of the dams,
demonstrating the importance of considering dams operation
(Fig. 4, S10). However, for the province as a whole, the inclusion of
this single measures did not significantly improve our predictions
with the average R2 improving only to 0.32 while the BNSE
increased to �0.09 compared to �0.15 in S1.

Overall, multiple scenarios were generated to explicitly examine
the effect of a range of specific datasets (i.e., observed meteoro-
logical data, gridded climate data, landuse data, soils data, glacial
data, and dams-reservoirs and lakes data) on model performance.
Results showed that model performance varied substantially for
different watersheds depending on the input data, but the im-
provements were spatially heterogeneous, only occurring in spe-
cific catchments. The aggregated performance of the scenarios at
each watershed level showed that the bR2 was increased in some
watersheds while it decreased in other watersheds (Fig. 5). Some
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scenarios improved the simulation results, while others decreased
the model performance. Table 3 summarizes performance of our
scenarios (see S1eS10) at provincial level. Compared to S1, the
number of stations with >0.40 was increased under S7eS10 sce-
narios followed by an increase in bR2 and R2. However a decrease in
the performance of other stations resulted in an overall decrease in
BNSE in S6 and S7. Overall, the performance of the model at a

province scale did not appreciably improve to produce satisfactory
results by incorporating any of the individual datasets. By “satis-
factory results” we mean performance gain not only in small trib-
utaries and head waters but also in main streams across the
province. A statistical test is a way of quantifying significance of the
performance gain among scenarios (Bennett et al., 2013). However,
we did not perform statistical test on bR2 values, because the

Fig. 5. Model performance of different scenarios for monthly streamflows at main river basins. The box plot of each scenario-dataset within each river basin shows the bR2 of the
simulated versus observed monthly discharges recorded in hydrometric stations of that river basin. Slave and South Saskatchewan River Basins are evaluated with one hydrometric
station in each.

Table 3
Average criteria efficiency of different scenarios in the study area prior to calibration.

Scenarios bR2 Number of stations with bR2 > 0.40 BNSE NSE R2

S1: MS 0.16 16 �0.15 �2000 0.29
S2: CFSR 0.18 14 �0.28 �3000 0.32
S3: CRU1 0.05 0 �0.64 �6000 0.11
S4: CRU2 0.06 0 �0.45 �5000 0.14
S5: NRCan 0.13 12 �0.33 �3000 0.27
S6: USGS 0.17 13 �0.39 �5000 0.26
S7: FAO 0.19 20 �0.40 �4000 0.31
S8: non contrib. 0.17 18 �0.39 �4000 0.31
S9: glacier 0.18 19 �0.12 �2.82 0.31
S10: dam/lake 0.18 20 �0.09 �2000 0.32
S11: combined (1) 0.24 26 �0.04 �3.43 0.39
S12: combined (2) 0.18 17 �0.15 �100 0.29
S13: combined (3) 0.31 30 0.09 0.12 0.44
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statistics provided would be meaningless as stations do not have
similar weights and are not equally important. In other word, our
goal was to examine improvements in all rivers (Table 3) to be able
to represent the actual processes not only in upstream tributaries
but also in downstream main watersheds.

3.2.2. Use of multiple datasets to improve performance of the SWAT
model

Given the lack of improvement in overall performance in the
streamflow predictions for the province despite specific improve-
ment for individual hydrometric stations, the effect of combined
datasets on the performance of the model was also examined.
Three scenarios were developed (S11, S12, S13, see Table 1) to
combine data from the individual dataset scenarios where our
simulation results were improved overall (Fig. 6a,b,c). We also

included the effect of the dams/LSL in each of the new scenarios,
since this was a major source of variability (Fig. 6d,e,f).

Using the S1 scenario as a base, the temperature data in the
original MS simulation was replaced with data from the CFSR
dataset and operation of the dams/LSRL was also included (S11).
S11 resulted in a considerable improvement in streamflow simu-
lation, especially in the northern watersheds where the quantity
and quality of observed temperature data were poor (Fig. 6a). The
bR2 was increased to about 0.9 in some of the hydrometric stations
which are close to the outlet of dams. The average BNSE and R2 in
this scenariowere improved to�0.04 and 0.39, respectively. For the
dams (Fig. 6d), we compared the simulated outflows with that of
measured data and S11 demonstrated that model performed well
for some dams but overall performance was not ideal since bR2 was
below 0.42 for 8 of the 14 stations recorded. Given the large effect of

Fig. 6. Model performance of S11, S12, S13 scenarios for monthly streamflows at 130 hydrometric stations (aec); and at the outlet of the 14 main dams and the Lesser Slave Lake
(def). Different colors show the bR2 of the stations and dams from the comparison of the measured versus simulated data. The BNSE and R2 are the averaged values of the stations
(aec) and dams (def) for the whole study area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dams on the performance of the model, we sought to improve this
performance by using additional datasets.

For S12, the Agriculture Agri-Food Canada, Soil Landscapes of
Canada V3.2 data was replaced with the FAO soil data into a new
simulation while also including the datasets from S11. However,
S12 did not improve the performance of the model and the incor-
rect simulation of the inflows to the reservoirs caused improper
simulation of the dam outflows (Fig. 6e; S12). This clearly demon-
strates that inclusion of each dataset and evaluation of the model
performance is required for proper set up of the SWAT model and
this should occur prior to calibration.

In the final scenario (S13), the Agriculture Agri-Food Canada,
Soil Landscapes of Canada V3.2 dataset was used and the dataset for
non-contributing regions and glacier runoff were also included as
these were shown previously to improve our streamflow simula-
tions (see Table 1). S13 significantly improved model performance,
both in streamflow prediction throughout the province (see
Table 3) and in simulation of dam outflows (Fig. 6, S13). The mean
BNSE and R2 were improved to 0.09 and 0.44, respectively (Fig. 6c).
Moreover, simulation of dam outflows improved substantially with
the mean BNSE of 0.09 and R2 of 0.58. Only 4 of the 14 reported
stations had a bR2 below 0.43 (Fig. 6f).

To better illustrate the effects of inclusion of different combined
datasets on improvement in model predictions, we selected 3 hy-
drometric stations downstream of either lake outflows (Fig. 7a,b) or
dams (Fig. 7cef) and demonstrated the effect of S12 or S13 on the
model performance. The stations are immediately after the reser-
voirs/lake and they are not influenced by any major tributaries.
Hence, they represent the outflow of the dams and lake. Lesser
Slave Lake exists in the northern part of the province and has some
non-contributing areas due to extensive agriculture in the region
and also has many large sand hills that likely serve as buffers for
water flow. There is no inflow directly from glaciers in this upper
watershed. Consequently, inclusion of non-contributing areas in
S13 resulted in a near-perfect (R2 ¼ 0.98) simulation of water
outflow from this natural impoundment (Fig. 7b). It is important to
mention that although the monthly outflow data of the dams and
LSL were used as input to the SWAT model but a perfect simulation
of these outflows were not possible unless an accurate simulation
of the upstream inflows to the reservoirs was obtained.

For man-made dams (Fig. 7cef), we selected both the Cascade
reservoir and Barrier Lake, two impoundments on the upper Bow
River, as examples of the improvements in performance of the
simulation associated with inclusion of the datasets in S13. In both

Fig. 7. Comparison of the monthly measured (blue line) and simulated (red line) discharges under S12 (left) and S13 (right) scenarios for Lesser Slave Lake and the two dams located
in Bow River basin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cases, the inclusion of the non-contributing and glacier flows
substantially improved the simulation of river flow when
compared with measured values. An improper streamflow simu-
lation at the upstream tributaries of the dams resulted in incorrect
inflow to the reservoirs which then resulted in emptying or over-
flowing of the dams (S12, Fig. 7a,c,e). These events resulted in a
poor simulation of the dams' outflow, which negatively affected the
downstreamflow regime. We found that one of the main reasons
for improvement noted in S13 (Fig. 7b,d,f) is the inclusion of CFSR
temperature data compared with MS. The CFSR temperature data
substantially improved simulation of the snow hydrology and
snowmelt in the mountainous glacierized highlands which pro-
duced an accurate simulation of streamflow to the reservoirs
behind the dams.

3.3. Effects of calibration and parameter adjustment on the scenario
selection

To test how an accurate model setup performed prior to cali-
bration serves as the best performing model after calibration, we
calibrated all scenario models of Athabasca River basin (see
Table 1). The calibration results showed an overall improvement in
all scenarios at the river basin scale (See Fig. 8). However, the

improvement was different across scenarios. In most of the less
accurate scenarios (S1eS10), the overall trend of bR2 in post-
calibration step did not always mimic the trend in pre-calibration
step. For example, the S1 (bR2 ¼ 0.092) and S4 (bR2 ¼ 0.043) had
better performance in pre-calibration step compared to S5
(bR2 ¼ 0.064) and S3 (bR2 ¼ 0.025), respectively. However, adjust-
ment of the parameters through calibration did not produce a
better performance in S1 (bR2 ¼ 0.147) and S4 (bR2 ¼ 0.068)
compared to S5 (bR2 ¼ 0.165) and S3 (bR2 ¼ 0.082). Nevertheless,
the bR2 trendwas almost similar in pre and post-calibration steps in
more accurate scenarios (S11eS13). In scenarios, where most
appropriate input data were provided to represent most of the
actual processes, the better performance models prior to calibra-
tion performed better after calibration, too. For example, in
S11eS13 scenarios, where combination of best available data were
provided to build the models, the S13 scenario served as the best
performing model in both pre and post-calibration steps compared
to all other scenarios (see Table 4). This followed by S11 and S12 as
the second and third best scenarios in both pre and post calibration
steps.

It must be pointed out that the parameters were optimized
using bR2 as the objective function in this study. The other effi-
ciency criteria presented in Table 4 are based on the best

Fig. 8. Calibration performance of different scenarios for monthly streamflows in Athabasca River basin. The box plot of each scenario shows the bR2 of the simulated versus
observed monthly discharges in 40 hydrometric stations in Athabasca River basin.

Table 4
Average criteria efficiency of different scenarios for pre-calibration and post-calibration steps in Athabasca River basin.

Scenario bR2 BNSE NSE R2

Pre Post Pre Post Pre Post Pre Post

S1: MS 0.092 0.147 �0.087 0.014 �0.363 �0.111 0.266 0.301
S2: CFSR 0.214 0.275 �0.632 �0.608 �8.767 �5.842 0.303 0.390
S3: CRU1 0.025 0.082 �0.224 �0.129 �0.743 �0.502 0.087 0.167
S4: CRU2 0.043 0.068 �0.191 �0.131 �0.656 �0.410 0.134 0.191
S5: NRCAN 0.064 0.165 �0.149 �0.001 �0.451 �0.135 0.229 0.367
S6: USGS 0.179 0.187 �0.348 �0.353 �3.086 �3.129 0.260 0.254
S7: FAO 0.208 0.226 �0.388 �0.253 �3.999 �2.080 0.287 0.300
S8: non contrib. 0.099 0.151 �0.072 0.015 �0.301 �0.090 0.266 0.308
S9: glacier 0.104 0.165 �0.061 0.032 �0.310 �0.097 0.291 0.322
S10: dam-Lake 0.108 0.147 �0.062 0.014 �0.337 �0.110 0.281 0.302
S11: combined (1) 0.202 0.314 0.019 0.107 �0.167 0.061 0.372 0.415
S12: combined (2) 0.156 0.281 �0.087 �0.035 �0.364 �0.355 0.255 0.378
S13: combined (3) 0.235 0.423 0.147 0.188 �0.024 0.112 0.394 0.535
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performing parameter set to serve as side information in evaluation
process. As also mentioned by Bennett et al. (2013), a single per-
forming criterion may represent only specific aspects of model
performance, which do not reproduce important features of a
system. In addition, only streamflow data was considered for our
calibration procedure. Given the fact that calibrated model pa-
rameters are “conditioned” on many factors including input data-
bases, optimization algorithms, number of calibration variables
(i.e., single or multiple variables), and all other assumptions, cali-
bration of streamflow data using a single optimization algorithm
should be treated with caution. Therefore, we emphasize that the
“best” model in our calibration scheme subjects to the use of data,
objective function (i.e., bR2), and output variable (i.e., streamflow)
used to calibrate model scenarios. Providing better quality data
especially in mountainous regions where climate data are scarce
and glaciers which play important role in the downstreamflow
regime, might result in another best model. In addition, a best
model that is calibrated against a single output variable (e.g.
streamflow) may not perform best when comparing the other
model outputs (e.g., evapotransiration, groundwater recharge, soil
water etc.). Therefore, our obvious conclusion in this study is that
building an accurate model using a database of higher quality is
better than building less accurate models using many databases of
questionable qualities where calibration is considered as a way to
fill such gaps.

As indicated in Bennett et al. (2013), the method of choice for
performance evaluations of the environmental models should be
tailored to the model purpose and scale of the study. In our large
scale study where measured ground water recharge or other water
components are not available at the provincial scale we believe
multi gauge calibration using the monthly river discharges of 130
hydrometric stations and providing good quality input data to the
model will represent the upstream hydrological processes
including system inflows, outflows, water storage changes, and
management measures throughout the entire upstream area.

4. Conclusions

The process-based semi-distributed hydrologic model, SWAT,
was used to quantify the causes and extents of biases in streamflow
simulation due to the use of various input data. The various data
types represented different sources of errors, including input data
(e.g., climate, soils, and landuse), conceptual model error (i.e., the
effect of glaciers and potholes, which were considered here as
unknown processes altering hydrological regime and were
explored through expert meetings), and land management mea-
sures (i.e., operation of large dams and lakes, which influence
downstreamflow regime). We built 10 different SWAT projects,
beginning from a base project and replacing individual datasets.
We also built 3 scenarios using different combinations of multiple
datasets. We qualified hydrological responses of the SWAT projects
through simulation of the streamflow and comparison with the
measured records at 130 hydrometric stations. The results showed
that improvements due to single measures were local. However, a
proper combination of input data, to better account for actual
physical processes, considerably improved the overall model per-
formance. Different scenarios demonstrated the importance of
spatially representative temperature records and incorporation of
glaciers runoff data.

Furthermore, simulation of potholes in southern prairies, and
large reservoirs/lakes had a notable effect in producing more ac-
curate simulation of streamflow. Specifically, we found that inclu-
sion of the CFSR temperature data improved our simulation results
in the data scarce northern watersheds and western snow domi-
nated highlands but the precipitation data resulted in an over

estimation of the streamflow. The procedure used in this study
shows the importance of carefully scrutinizing and selecting data-
bases that will most accurately represent the hydrological pro-
cesses in the model prior to calibration.

Calibration of all scenarios in Athabasca River basin, revealed
that an accurate model built with a database of higher quality
performs better than a model where databases of questionable
qualities were used. Providing better quality data in model setup
will avoid unnecessary and arbitrary adjustment of the parameters
and will ensure better performance when dealing with subjective
and challenging calibration analysis. Overall, our findings recom-
mend the use of various available data sources in hydrological
modeling and qualifying them through alternative simulation
scenarios prior to calibration of the model parameters.
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