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Abstract
The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions.
In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and
temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green
water flow, and green water storage for a future period (2010–2099) compared to a historical period (1992–2008). The r-factor, p-
factor, R2, and Nash–Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76,
0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the
IPCC’s Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water
tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to
continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and
green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated
uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the
watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of
climate change are notably different between IPCCAR4 and AR5 in the Bazoft watershed. This study provides a strong basis for
water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.
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1 Introduction

Changes in the hydrological cycle due to climate change can
affect water resource availability (IPCC 2014), and their im-

pact can differ among regions. Irregular distribution of precip-
itation patterns and high temperatures are major concerns for
the access, availability, and uses of water resources (Eslamian
2014). Water is an important factor that showcases many of
the effects of climate change on society, especially via the
agriculture and energy sectors.

To increase the efficient use of available water, water man-
agement approaches are essential for both society and ecosys-
tems (Leal Filho 2012). The blue water and green water con-
cepts have introduced a new approach for water resources
management, especially in arid and semi-arid regions where
water scarcity is a serious issue (Zang et al. 2012). Blue water
is the summation of water yield and deep aquifer recharge,
green water flow is actual evapotranspiration, and green water
storage is the soil water content (Falkenmark and Rockström
2006; Schuol et al. 2008a, b). These components are useful in
identifying and managing the critical areas. Blue water is use-
ful for socioeconomic development (Shiklomanov 2000; Döll
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2002; Zhang et al. 2014), green water is important for food
supply and ecosystem health, and green water storage is the
main water resource in rainfed agriculture (Rockström et al.
2009; Engdahl et al. 2012).

Investigating climate change impacts on water resources
is important for long-term planning to achieve sustainable
management of water resources (Zhang et al. 2014).
Modeling tools can be useful for researchers and policy

Fig. 2 Maps included in the SWAT model of the Bazoft watershed: (a) land use and (b) soil (S1-S25 are SWAT soil code/name in the SWAT databases)

Fig. 1 Location of the study area and the selected meteorological and hydrological stations
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makers as tools for decision-making (Zang et al. 2012).
Fakhri et al. (2014) investigated 72 hydrological models
and reported that the soil and water assessment tool
(SWAT) model is one of the most efficient in watershed
modeling. Many studies (e.g., Abbaspour et al. 2009;
Faramarzi et al. 2009; Ashraf Vaghefi et al. 2013;
Faramarzi et al. 2013; Li et al. 2014, 2015, Shrestha et al.
2015) have shown that the SWAT model is a useful tool for
investigating climate change effects on water resources.
Faramarzi et al. (2013) investigated freshwater availability
under climate change scenarios in Africa using the SWAT
model. Although their models provide insightful informa-
tion at the regional scale, the spatial resolution of input
data was too large to assess water resources at a watershed
scale and the monthly changes of blue water and green
water could not be considered at the local scale. Many
other studies have analyzed spatiotemporal changes of blue
and green water resources at the basin level, but climate
change effects have not been investigated (e.g., Zang et al.
2012; Rouholahnejad et al. 2014; Zhang et al. 2014; Zuo

et al. 2015). Furthermore, blue and green water resources
have been investigated using scenarios derived from the
IPCC’s Fourth Assessment Report (AR4) (e.g., Lee and
Bae 2015) but rarely from the IPCC’s Fifth Assessment
Report (AR5).

The IPCC Special Report on Emissions Scenarios
(SRES) defined four emission scenarios: A1, A2, B1,

Fig. 4 The results of simulated
monthly discharges during
calibration and validation periods

Fig. 3 CO2 concentrations during 1960–2100 of a AR4 and b AR5 under different scenarios

Table 1 Summary statistics of simulated monthly discharges during
calibration and validation periods

Discharge station Evaluation criteria

R2 NS p-factor r-factor

Marghak Calibration 0.80 0.80 0.89 1.02

Validation 0.57 0.59 0.76 1.03

R2 coefficient of determination, NS Nash-Sutcliff coefficient, p-factor
percentage of data being bracketed by 95PPU
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and B2. Each scenario represents various changing factors
(e.g., population growth, economic growth, advances in
technology, environmental characteristics, etc.), while
AR5 adopts a different approach and the four new scenar-
ios called representative concentration pathways (RCPs)
(2.6, 4.5, 6.5, and 8.5), which are not directly comparable
with the SRES scenarios (Clarke et al. 2014; IPCC 2007).
The IPCC AR5 scenario is based primarily on results

from the Coupled Model Intercomparison Project Phase
5 (CMIP5), promoted by the World Climate Research
Program (WCRP), and it relies on results from CMIP3
modeling (Knutti and Sedláček 2013). The model range
depicted in AR5 is slightly narrower than that in AR4, but
uncertainty is still an issue that must be managed by users
of new information (Urich et al. 2013). Knutti and
Sedláček (2013) compared projections from CMIP3 and

Fig. 5 The spatial pattern of the average (a, c) and variation coefficients (b, d) of rainfall and blue water resources calculated based on the average annual
M95PPU values during 1992–2008
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CMIP5 to look for convergence. They showed that mean
patterns of rainfall and temperature change are similar
between CMIP3 and CMIP5 at the global scale. Two re-
maining questions are how to interpret the lack of model
convergence at the local scale, and what the uncertainties
of water resource components are in CMIP3 and
CMIP5 at the local scale, a topic that will be covered in
this manuscript.

In this study, we investigated changes in various water
resources in the context of climate change, and their uncer-
tainties at the local scale. Our main objectives were (1) to
calibrate and validate the SWAT model to analyze spatiotem-
poral water resource components at the sub-basin level with
monthly time-steps and (2) to interpret uncertainties in various
water resource components in the context of climate change
based on IPCC AR4 and AR5 at the local scale.

Fig. 6 The spatial pattern of mean (a, c), and variation coefficients (b, d) of green water flow and green water storage calculated based on the average
annual M95PPU values during 1992–2008
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2 Material and methods

2.1 Study area

The study area is the Bazoft watershed located between 31°
37′–32° 39′ N and 49° 34′–50° 32′ E in Iran (Fig. 1). The
elevation ranges from 880 m in the south to 4200 m on
Zardkuh Mountain in the northeast (Fig. 1). The long-term
average rainfall and temperature are 800 mm and 10 °C,
respectively. Quercus brantii and Astragalus spp. are the
most abundant species of forest tree and pastures, respec-
tively. Rainfall varies within the watershed, wherein aver-
age rainfall in the north is 1400 mm, and average rainfall in
the south is < 500 mm due to the high-relief topography.

2.2 Hydrological modeling

2.2.1 SWAT model

The SWAT model is a semi-distributed, semi-physically
based, basin-scale, temporally continuous model (Neitsch
et al. 2009; Fakhri et al. 2014). It has been applied widely at
different scales including the continental scale (e.g.,
Abbaspour et al. 2015; Faramarzi et al. 2013), national scale
(e.g., Faramarzi et al. 2009), and regional scale (e.g., Zhang
et al. 2014; Rodrigues et al. 2014).

2.2.2 Model data input and setup

The basic input data for the SWAT model comprised a
digital elevation model (DEM), land use, soil type, and
meteorological data. We first used a 30 m × 30 m grid size
DEM, plus land use and soil layers. Climatic data includ-
ing daily precipitation and temperature were obtained from
the synoptic, climatological, and rain gauge stations locat-
ed in the study area for a period of 20 years (1989–2008).
Figures 1 and 2 show the maps (such as DEM, soil, and
stream networks) included in the SWAT model. The entire
simulation period was from 1989 to 2008, wherein the first
3 years (from 1989 to 1991) were considered as warm up
period.

2.2.3 Sensitivity analysis, calibration, and validation

We used one-at-a-time method for the sensitivity analysis.
Calibration, validation, and uncertainty analyses were done
through the SUFI-2 program (Abbaspour 2012). Two thirds

of the monthly discharge data (from 1998 to 2008) were
used for calibration and the remaining one third (from
1992 to 1997) were used for validation. P-factor and R-
factor indices were used to quantify the calibration
performance.

2.2.4 Mass balance in SWAT model

The general water balance equation in the SWAT model is
shown by Eq. (1) where each of the components can be in-
volved in blue water and green water flow or storage (van
Griensven et al. 2012; Rodrigues et al. 2014).

Rainfall ¼ EvapotranspirationþWater Yeild

þ Δ Soil Storageð Þ þ Δ Groundwater Storage

þ Losses ð1Þ

Blue water is the sum of the water yield (SWAT output
WYLD) and deep aquifer recharge (SWAT output
DA_RCHG) during the time step. Green water flow is repre-
sented by the actual evapotranspiration (SWAT output ET),
and green water storage is the amount of water in the soil
profile at the end of a time period (SWAT output SW), as
suggested by Schuol et al. (2008b).

2.3 Global climate models and emission scenarios

General circulation models (GCMs) are used to determine
future climate conditions, and various research institutes
around the world have developed their own models. We
obtained GCM data from the IPCC Data Distribution
Center (http://www.ipcc-data.org/index.html) for each
scenario. We used the GCM/SRES data from AR4 and
the GCM/RCP data from AR5. In this study, we analyzed
the hydrological models for the 2010–2039, 2040–2069,
and 2070–2099 future periods. The set consisted of 18
model-scenar ios including of CGCM2, CISRO,
ECHAM, HadCM3, and PCM models from AR4, and
GFDL, HADGEMES, IPSL, MROC, and NOEResm
models from AR5. For the AR4 models, we used A2
and B1 scenarios, while for the AR5 models, we used
RCP 2.6 and RCP 8.5 trajectories.

2.3.1 Change factor method

GCM climate projections have large uncertainties, and
it is unreasonable to use the GCM simulation data
directly at local scales (Murphy et al. 2004; Jung
et al. 2013). Statistical downscaling techniques use
the coarse resolution of GCMs at regional scales to

�Fig. 7 Spatial pattern of blue water means predicted using bootstrap
technique at the 2.5% (L95PPU) and 97.5% (U95PPU) uncertainty levels
during 2010-2099, with possible changes in the AR4 scenarios from five
GCMs (CGCM2, CISRO, ECHAM, HadCM3 and PCM)
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establish relationships among the GCM output, climate
variables, and the local climate (Fowler et al. 2007).
The change factor is a method for downscaling the
course spatial and temporal resolution and can be im-
plemented for different timescales such as daily, month-
ly, or longer periods (Zahmatkesh et al. 2014). Many
studies use the change factor for downscaling climatic
variables (e.g., Diaz-Nieto and Wilby 2005; Tabor and
Willams 2010; Abdolhosseini and Farzaneh 2014;
Zahmatkesh et al. 2014).

We used the change factor method to downscale precipita-
tion and temperature. In this method, to obtain future regional
condition, climate change scenarios are added to observed
values via Eqs. (2) and (3):

P ¼ Pbase � ΔP ð2Þ

T ¼ Tbase þ ΔT ð3Þ
where P and T are time series of precipitation and temperature
in the future period, Pbase and Tbase express observed time
series of monthly precipitation and temperature in the base
period, andΔP andΔT relate to a downscaled climate change
scenario, respectively.

CO2 concentration is an important factor for climate
change impact assessment because an integrated depiction of
climate change depends on the emission of CO2 and the cor-
responding climate response (Jha et al. 2006). Figure 3 shows
the CO2 concentration in different scenarios in AR4 and AR5.
We calculated CO2 concentrations for three future periods
(2010–2039, 2040–2069, 2070–2099) for use in the SWAT
model.

2.4 Bootstrap technique

Using the results of the model for different scenarios of
GCM/SRES/RCP, we used a bootstrap technique to ana-
lyze the uncertainties of the outputs (Efron 1979). The
bootstrap method is a simple procedure used to estimate
the required values in a specific statistical pattern for sim-
ulating parameter distributions (Fakhri et al. 2013). The
resulting uncertainty is quantified by using the 95PPU,
calculated at the 2.5 and 97.5% levels of the cumulative
distribution of an output variable obtained through
bootstrapping.

3 Results and discussion

3.1 Sensitivity analysis, calibration, and uncertainty
analysis

CN2, temperature, precipitation, and surface runoff lag time
coefficient (SURLAG) were the most sensitive parameters.
The results of simulated discharges at the monthly time scale
during the calibration and validation periods are presented in
Fig. 4. We found that the discharge simulations during the
historical period (1992–2008) were accurate. Obtained evalu-
ation criteria of the r-factor, p-factor, R2, and Nash–Sutcliff
coefficients were 1.02, 0.89, 0.80, and 0.80 for the calibration
period and 1.03, 0.76, 0.57, and 0.59 for the validation period,
respectively (Table 1).

3.2 Quantification of water resource availability

We calculated the 95PPU at the monthly time scale using the
simulation results at the 2.5 and 97.5% uncertainty levels. We
used the simulated results at the 50% uncertainty level
(M95PPU) to calculate changes of variables relative to the
corresponding historical simulations during 1992–2008.
Since GCMs have various uncertainties associated with cli-
mate change impacts on hydrological processes, 18 different
scenarios were used for impact assessment.

All scenarios extracted from the SWAT outputs of water
resource components, using the bootstrap technique at the
2.5 and 97.5% uncertainty levels, were used to capture mini-
mum and maximum uncertainties in the future.

3.2.1 Availability of blue and green water resources
at the sub-basin scale during the historical period

Figure 5c shows the average values of blue water (mm/year)
based on historical data during 1992–2008. In general, blue
water increased in the northern part of the watershed. Most of
blue water (1300–1400 mm) occurred in sub-basins 6 through
12. These are mostly covered by snow in fall and winter, and
sub-basins with snow and melting water often have more blue
water. The least blue water (400–500 mm) was observed in
sub-basins 39 to 41. The spatial pattern of blue water was
mainly influenced by the spatial pattern of rainfall (Fig. 5a,
c). However, rainfall distribution depends on elevation, and
sub-basins 6 to 12 are at the highest elevation, while sub-
basins 39 to 41 are at the lowest. The total difference in ele-
vation throughout the watershed is 3300 m, and rainfall varies
between 400 and 1400 mm/year. Overall, both rainfall and
blue water per sub-basin in the Bazoft watershed decreased
from upstream to downstream (Fig. 5).

We mapped the long-term (1992–2008) averages of
green water flow and storage for the watershed, along with
their coefficients of variation (Fig. 6). In contrast to blue

�Fig. 8 Spatial pattern of blue water means predicted using bootstrap
technique at the 2.5% (L95PPU) and 97.5% (U95PPU) uncertainty levels
during 2010-2099, with possible changes in the AR5 scenarios from five
GCMs (GFDL, HADGEMES, IPSL, MROC and NOEResm)
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water, green water flow decreased from upstream to down-
stream in the watershed. Green water flow is mainly influ-
enced by land cover in these areas. Forest and winter wheat
are the main land cover types in the south, especially in
sub-basins 34 to 41, while most northern and central sub-
basins are dominated by rangeland and rock. Overall,
green water flows are distributed more homogeneously
among sub-bas ins than were blue water f lows .
Precipitation is high in upstream sub-basins, but evapo-
transpiration is relatively small, potentially due to low tem-
perature. In downstream sub-basins, precipitation is low
and temperature is higher, meaning that most precipitation
evaporates directly into the atmosphere. Furthermore, field
observations have shown that soil depth in most regions is
less than 10 cm, especially in sub-basins 6 to 12; conse-
quently, evaporation from soil and transpiration from veg-
etation of the sub area is too low.

While the green water storage was relatively high (Fig. 6c),
the amount of blue water in the southern portion of the water-
shed was low (Fig. 5c), which may be related to the forest’s
capacity to hold soil moisture. In most of the northern sub-
basins, and especially in sub-basins 6 to 12 where soil depth
was low, the amount of green water storage was high. This is
mainly due to the snow and melting water that cause higher
green water storage in the low-depth soils. The central sub-
basins had the lowest green water storage because of their low
soil depths and predominantly rangeland cover types.

To determine the annual variation of water resource com-
ponents from 1992 to 2008, we calculated the coefficient of
variation (CV in %):

CV ¼ σ
μ
� 100 ð4Þ

where σ is the standard deviation and μ is the mean value of
annual water resource components for each sub-basin. A high
CV indicates a region vulnerable to extreme weather condi-
tions such as drought (Abbaspour et al. 2015). Figures 5b, d
and 6b, d illustrate the CV of historical water resource com-
ponents for each sub-basin. In general, the CV was lowest for
green water storage and largest for blue water. For blue water,
blue regions were more reliable in terms of their water re-
sources (Fig. 5d). Areas with greater soil moisture and smaller
CV indicate a higher potential for the development of rainfed
farming (Fig. 6d).

3.2.2 Impact of climate change on water resource
components

The maps of all components are provided for the future pe-
riods of 2010–2039, 2040–2069, and 2070–2099 to showcase
relationships between climate change and hydrological
components.

Figures 7 and 8 show the mean values of blue water during
2010–2099 with possible changes in the AR4 and AR5 sce-
narios at the 2.5% (L95PPU) and 97.5% (U95PPU) uncertain-
ty levels. Trends for blue water showed considerable spatial
variation among sub-basins (Fig. 7). In general, blue water
decreased during the future simulation periods. Although the
U95PPU of the blue water increased in the B1 (2010–2039,
Fig. 7d) and A2 (2070–2099, Fig. 7j) scenarios, in most pe-
riods, it showed a decreasing trend compared to the historical
period (Figs. 5c and 7). The L95PPU of blue water reached its
minimum in A2 (2070–2099, Fig. 7j). Overall, the A2 scenar-
io (2070–2099, Fig. 7i, j) illustrates the upper and lower limits
of blue water in the future. Changes in blue water flow in the
AR4 scenarios (Fig. 7) were consistent with those in the AR5
scenarios (Fig. 8) over most periods and in most parts of the
area, except the northernmost and southernmost sub-basins.
RCP 2.6 (U95PPU, 2070–2099, Fig. 8j) and RCP 8.5
(U95PPU, 2010–2039 and 2070–2099, Fig. 8d, l) illustrate
the maximum value of blue water. Minimum conditions are
illustrated in RCP 2.6 (L95PPU, 2010–2039 and 2070–2099,
Fig. 8a, i). Generally, the amount of blue water flow in most
AR5 scenarios was higher than under the AR4 scenarios
(Figs. 7 and 8).

Figures 9 and 10 illustrate the average values of green
water flow predicted based on the future period of 2010–
2099. Future changes in green water flow show more hetero-
geneous conditions in different scenarios, periods, and sub-
basins than do those of blue water and green water storage.
In general, green water flow increased in the downstream and
midstream basins, but we found low spatial variation among
the northern sub-basins compared to the historical period
(Figs. 6a, 9, and 10). The U95PPU in A2 (2070–2099) illus-
trates the maximum value of green water flow (Fig. 9j).
Overall, Fig. 10 shows that the value of green water flow in
the AR5 scenarios is greater than that in the AR4 scenarios
(Figs. 9 and 10).

At the all-basin scale, past trends in green water storage
will persist into the future (see Figs. 6c and 11). Since there
were no differences among future periods, only two maps, at
the 2.5 and 97.5% uncertainty levels, are presented in Fig. 11.

3.2.3 Blue and green water resource availability
at the monthly time scale

Figure 12 shows the SWAT 95PPU ranges of water resource
component monthly averages for 1992–2008 under the 18

�Fig. 9 Spatial pattern of green water flow means predicted using
bootstrap technique at the 2.5% (L95PPU) and 97.5% (U95PPU) uncer-
tainty levels during 2010-2099, with possible changes in the AR4 scenar-
ios from five GCMs (CGCM2, CISRO, ECHAM, HadCM3 and PCM)
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scenarios. Many of these scenarios were located in our predic-
tion uncertainties (see Fig. 12).

Uncertainties were larger for blue water and smaller for
other components (Fig. 12b). This may be caused by a limited
soil water supply as well as by soil evapotranspiration and the
soil evaporation compensation factor (ESCO) parameter for
green water flow and green water storage, respectively; most
parameters used in the calibration procedure are involved in
calculating blue water values. The large uncertainty could be
caused by snow parameters not specially being defined in
SWAT’s classification, and runoff supply from melting snow
and on frozen ground not being simulated in the SCS method.
Similar issues have been reported in literature (Fontaine et al.
2002; Rostamian et al. 2008; Akhavana et al. 2010).

In Fig. 12b, the uncertainty is high from March to June
because the watershed is dominated by spring snow melt.
The region freezes sometime between Jan 1 and March 15
and staying frozen until the spring thaw, which can take place
from March 15 to June.

In Fig. 12c, the uncertainty is low in fall and early
winter because the biomass is minimal, while in spring
and summer, the uncertainty is increased due to irrigation
management in agricultural areas. Overall, in most
months, the average uncertainty in future prediction was
smaller than the lower bound of the historical prediction
uncertainty (Fig. 12c).

Different climate change scenarios showed a narrow range
in green water storage (Fig. 12d). The monthly average green
water storage showed that in spring and summer, there is suf-
ficient soil water; thus, the watershed has higher potential for
the development of rainfed agriculture (Fig. 12d). Faramarzi
et al. (2009) and Abbaspour et al. (2015) reported similar
results for their study areas in Iran and Europe, respectively.

4 Conclusions

In this study, we successfully applied a sub-basin-scale hydro-
logic model at the monthly time scale to quantify water re-
source components and climate change impact assessments
for the Bazoft watershed, Iran. The calibration and validation
results were acceptable for river discharge. The impact assess-
ment was done both spatially (sub-basin scale) and temporally
(monthly time scale). Our results showed that hydrological

�Fig. 10 Spatial pattern of green water flow means predicted using
bootstrap technique at the 2.5% (L95PPU) and 97.5% (U95PPU) uncer-
tainty levels during 2010–2099, with possible changes in the AR5 sce-
narios from five GCMs (GFDL, HADGEMES, IPSL, MROC and
NOEResm)

Fig. 11 Spatial pattern of green water flow means predicted using bootstrap technique at the 2.5% (L95PPU) and 97.5% (U95PPU) uncertainty levels
during 2010–2099, with possible changes in the AR4 and AR5 scenarios from ten GCMs
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Fig. 12 Average (1992–2008)
monthly 95PPU ranges of a
precipitation, b blue water, c
green water flow, and d green
water storage for the Bazoft
watershed under 18 scenario
impact assessments
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variables can differ among locations within a basin. The
U95PPU and L95PPU in blue and green water flows varied
widely across watershed.

Differences among the AR4 and AR5 scenarios might be
due to the sources of uncertainty and their assumptions. At the
watershed scale, blue water will continue decreasing in the
future. We found that green water flow increased in the down-
stream and midstream sub-basins, but that there was low spa-
tial variation among northern sub-basins compared to the his-
torical period. We also found that green water storage will
continue its historical trend in the future.

The uncertainties that we calculated for the historical peri-
od were negligible in green water flow and green water stor-
age but were larger for green water flow because the supply of
water to the soil and for evapotranspiration is limited by the
soil’s capacity and the ESCO parameter. However, most of
parameters in the calibration procedure for blue water calcu-
lations, as well as for snow melt in March, April, May, and
June, were available. Furthermore, different climate change
predictions were within a narrow range in all months for green
water storage. To increase accuracy and decrease uncer-
tainties, we recommend considering climate change and land
use changes simultaneously.

In our study, the spatial patterns of water resource compo-
nents and their uncertainties in the context of climate change
were notably different under the AR4 and AR5 scenarios at
the local scale, while Knutti and Sedláček (2013) showed that
climatic factors, including precipitation and temperature, were
similar at the global scale. The differences between these cli-
mate change models are related to uncertainties and their un-
derlying assumptions. All of these uncertainties are low when
aggregated globally, especially for climate variables, whereas
the effects of climate change are local and could differ among
water resource variables. There is much spatial heterogeneity
and larger uncertainty at the local scale. This study can be
applied to other regions facing similar challenges to help as-
sess the likely effects of climate change on water resource
components and may help decision makers a global scale.
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