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A B S T R A C T   

Snowmelt is a major driver of the hydrological cycle in cold regions, as such, its accurate representation in 
hydrological models is key to both regional snow depth and streamflow prediction. The choice of a proper 
method for snowmelt representation is often improvised; however, a thorough characterization of uncertainty in 
such process representations particularly in the context of climate change has remained essential. To fill this gap, 
this study revisits and characterizes performance and uncertainty around the two general approaches to snow-
melt representation, namely Energy-Balance Modules (EBMs) and Temperature-Index Modules (TIMs). To ac-
count for snow depth simulation and projection, two common Snow Density formulations (SNDs) are 
implemented that map snow water equivalent (SWE) to snow depth. The major research questions we address are 
two-fold. First, we examine the dominant controls of uncertainty in snow depth and streamflow simulations 
across scales and in different climates. Second, we evaluate the cascade of uncertainty of snow depth projections 
resulting from impact model parameters, greenhouse gas emission scenarios, climate models and their internal 
variability, and downscaling processes. We enable the Soil and Water Assessment Tool (SWAT) by coupling EBM, 
TIM, and two SND modules for examination of different snowmelt representation methods, and Analysis of 
Variance (ANOVA) for uncertainty decomposition and attribution. These analyses are implemented in moun-
tainous, foothill, and plain regions in a large snow-dominated watershed in western Canada. Results show, rather 
counter-intuitively, that the choice of SND is a major control of performance and uncertainty of snow depth 
simulation rather than the choice between TIMs and EBMs and of their uncertain parameters. Also, analysis of 
streamflow simulations suggest that EBMs generally overestimate streamflow on main tributaries. Finally, un-
certainty decompositions show that parameter uncertainty related to snowmelt modules dominantly controls 
uncertainty in future snow depth projections under climate change, particularly in mountainous regions. 
However, in plain regions, the uncertainty contribution of model parameters becomes more variable with time 
and less dominant compared with the other sources of uncertainty. Overall, it is shown that the hydro-climatic 
and topographic conditions of different regions, as well as input data availability, have considerable effect on 
reproduction of snow depth, snowmelt and resulting streamflow, and on the share of different uncertainty 
sources when projecting regional snow depth.   

1. Introduction 

Snowmelt is one of the most important components of the hydro-
logical cycle, as it controls the magnitude and dynamics of snow depth, 
streamflow, and flood frequency, especially in mountainous regions 
with high climate variability (Zeinivand and de Smedt, 2010; Abbas 

et al., 2019). Snowmelt is dependent on various climatological and 
geophysical factors including, but not limited to, precipitation, tem-
perature, solar radiation and vegetation cover. The dynamics and 
properties of such factors are expected to change in time and space 
under future climate conditions; hence, the impact of climate change on 
snowmelt dynamics can be substantial (Raleigh and Clark, 2014; 
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Verdhen et al., 2014a). Therefore, it is essential to understand the 
governing factors and processes that control snowmelt and how they 
might change over time under current and future conditions. An 
improved understanding can enable hydrologists and water managers to 
reduce uncertainty for future planning and management of water re-
sources, and adaptation to climate change (Pradhanang et al., 2011). 

Recently, process-based hydrological models have been used to 
simulate snow accumulation and snowmelt in different regions with 
various levels of areal extent and climate conditions. These models 
include, but are not limited to, Cold Regions Hydrological Model 
(CRHM) (DeBeer and Pomeroy, 2017; Fang et al., 2010), Variable 
Infiltration Capacity (VIC) (Barnhart et al., 2016; Islam et al., 2017) and 
Soil and Water Assessment Tool (SWAT) (Pradhanang et al., 2011; Qi 
et al., 2017; Tiwari et al., 2018). In hydrological models, snowmelt 
simulation is carried out through two widely-used approaches, namely 
Temperature-Index Modules (TIMs) and Energy-Balance Modules 
(EBMs) (Debele et al., 2010). TIMs (also known as degree-day methods) 
are generally regarded as a simple and parsimonious approach for 
snowmelt estimation, as they are solely dependent on air temperature 
and snowpack (Hock, 2003; Debele et al., 2010). EBMs, however, are 
more complex and parameterized, as they try to comprehensively ac-
count for energy exchanges in air-and-snowpack and snowpack-and-soil 
interfaces (Dingman, 2015). While comparative assessments of TIMs and 
EBMs in snowmelt simulation models have widely been studied across 
different regions, the choice of the best model for hydrologic modelling 
in particular at regional scales remains a controversy (Zhang et al., 2008; 
Pradhanang et al., 2011). 

EBMs are generally expected to outperform TIMs in simulating 
snowmelt dynamics, mainly because of their more realistic and 
physically-based nature (Todd Walter et al., 2005; Fuka et al., 2012; Qi 
et al., 2017; Massmann, 2019). Nevertheless, several studies have sug-
gested that TIMs may perform equally well or even better than EBMs do 
in the representation of snowmelt and snow depth dynamics (e.g., Franz 
et al., 2008; Debele et al., 2010; Verdhen et al., 2014a). In addition, a 
disadvantage of EBMs is that they are more data-intensive and demand 
numerous forcing inputs, many of which cannot be directly measured or 
quantified at scales larger than an instrumented site (Bavera et al., 2014; 
Raleigh et al., 2016; Mas et al., 2018). The issues around data demands 
are exacerbated in regional studies with climate and land cover het-
erogeneity, especially in mountainous regions where regionalized data 
of energy-based variables such as snow albedo, snow surface tempera-
ture, emissivity and temperature lapse rate are difficult and costly to 
measure (Najafi et al., 2017; Raleigh et al., 2016; Sun et al., 2019). 
Furthermore, the adequacy of any of TIMs and EBMs depends on the 
properties of driving climate forces in the region of interest. For 
instance, while use of EBMs in maritime regions with more rain-on-snow 
events has proven more suitable, TIMs can be considered better options 
in regions where net solar radiation, which is a proxy for air tempera-
ture, is the dominant heat source (Debele et al., 2010; Qi et al., 2017). 
Consequently, the heterogeneity in climate, land cover, and topography 
across large river basins results in the dominancy of different snowmelt 
mechanisms in different parts. Most of previous studies, however, have 
investigated and compared the adequacy of TIMs or EBMs in small-scale 
areas where extensive data is available (e.g., Franz et al., 2008; Tobin 
et al., 2013; Aggarwal et al., 2014; Fu et al., 2015); some other studies 
focused on larger but relatively homogeneous areas in terms of land 
cover, climate, and topography (for instance, Ficklin and Barnhart, 
2014; Troin et al., 2015a; Haghnegahdar et al., 2017). Hence, the per-
formance of TIMs and EBMs in snowmelt simulation in regional studies 
with high variability of topography, climate, and land-use is yet to be 
properly understood. 

The availability of extensive and reliable data is key to successful 
model parametrization and simulation of snowmelt and snow depth in 
regional hydrological models (Shrestha et al., 2012; Mas et al., 2018). At 
field scales where sufficient field data is available, high-fidelity snow-
melt models can be developed (e.g., Pomeroy et al., 1998; Harder et al., 

2018). At larger scales, however, where field data coverage is limited, 
some physical characteristics of the basin need to be represented in 
models by user-defined ‘effective’ parameters (Mas et al., 2018). Iden-
tifying such parameters that control the representation of physical 
processes in regional hydrological models is critical for short-term pre-
dictions and also projections of how the basin future might look like 
under climate change (Singh and Frevert, 2002). Parameter identifica-
tion in snowmelt and streamflow projections is mostly done through 
optimization-based approach (Razavi et al., 2010), where the best set of 
parameter values according to some goodness-of-fit criteria is identified 
and used for prediction and scenario runs (e.g., Franz et al., 2008; Zei-
nivand and de Smedt, 2010; Pradhanang et al., 2011; Qi et al., 2017; Liu 
et al., 2018). However, it is well-known that the proper parameter 
values are typically non-unique in any given problem, a phenomenon 
that is commonly referred to as equifinality (Beven and Freer, 2001; Fu 
et al., 2015). To address equifinality, uncertainty-based approaches are 
used, where several well-performing sets of parameter values form 
optimal ranges for parameters to account for input data, model struc-
ture, and parameter uncertainty (e.g., Faramarzi et al., 2009, 2017; 
Renard et al., 2010; Wu et al., 2017; Ahmadalipour et al., 2018). 

Model structure uncertainty (e.g., EBMs versus TIMs) and parameter 
uncertainty within hydrological modelling are two of the many uncer-
tainty sources in the ‘cascade of uncertainty’ for climate change impact 
assessment. Other sources include Global and Regional Climate Models 
(GCMs and RCMs), Representative Concentration Pathways (RCPs), and 
downscaling methods (Chen et al., 2011b; Bosshard et al., 2013). When 
dealing with the cascade of uncertainty in climate change impact as-
sessments, it is important to decompose and apportion the predictive 
uncertainty to the different uncertainty sources. The Analysis of Vari-
ance (ANOVA) has frequently been used for this purpose (e.g., Déqué 
et al., 2007; Yip et al., 2011; Bosshard et al., 2013). ANOVA is the basis 
of the well-established variance-based approach to global sensitivity 
analysis (GSA) for uncertainty apportionment (Razavi and Gupta, 2019; 
Sobol’, 1993). We note that ANOVA, and GSA in general, is not a means 
to quantify uncertainty in different sources; instead, it breaks down the 
total uncertainty in the output and attributes its pieces to different un-
certainty sources and their interactions. This way, ANOVA identifies the 
dominant controls of predictive uncertainty, and also the factors whose 
uncertainty does not matter much. Furthermore, ANOVA is suitable for 
this study because there is no correlation structure between the uncer-
tainty sources that are under investigation here as they are fundamen-
tally different – refer to Do and Razavi (2020) for a discussion on this 
issue. 

The majority of studies for apportionment of uncertainty in future 
projections addressed only uncertainty from climate models, emission 
scenarios, and downscaling techniques (Kim et al., 2019). Recent studies 
quantified the uncertainty contribution from hydrological model pa-
rameters and input data to the uncertainty in projection of future 
streamflow (Jung et al., 2012; Prudhomme and Davies, 2009; Vetter 
et al., 2017; Wilby and Harris, 2006), green water and blue water flows 
(Ashraf Vaghefi et al., 2019), and Snow Water Equivalent (SWE) (Poulin 
et al., 2011). In this regard, the uncertainty due to the choice of TIMs 
and EBMs along with their parameterizations and its impact on uncer-
tainty in snowmelt and snow depth projections under a changing climate 
has not been quantified. Unlike TIMs, EBMs are more physically-based 
and therefore they demand more extensive spatiotemporal data to run. 
As such high resolution data may not be available at regional scales, 
calibration parameters are needed to be assigned to unknown input 
variables required by EBMs. Therefore, it is essential to quantify the 
effects of TIMs (as simpler, less parametrized modules) and EBMs (as 
more complex, more parameterized modules) on snow depth projections 
under climate change scenarios in large watersheds with diverse hy-
drologic, climatic, and geospatial conditions. 

Another major but often ignored research gap in hydrologic model-
ling of cold regions is the representation of snowpack in those models, 
which is in the form of SWE (Avanzi et al., 2015) and is directly 
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calculated from snowmelt modules. However, measurements of snow 
that are used for model evaluation are often available only as snow 
depths, not SWE (Sturm et al., 2010). Therefore, the accurate estimation 
of snow density (SND) that converts simulated SWE (i.e., in mm water) 
to snow depth (i.e., in mm snow depth) and vice versa becomes key to 
credible modelling of snow processes at regional scales. An accurate 
estimation of SWE, SND, and the conversion to snow depth is possible 
within field scales (Jost et al., 2007; Young et al., 2013; Li et al., 2017). 
However, field measurements in large regions are time-consuming, 
costly, and complicated because of heterogeneity in topography and 
natural conditions, and therefore, only a limited number of snow surveys 
can be available for a watershed (Bocchiola and Groppelli, 2010; Avanzi 
et al., 2015). As such, reliable estimation of SND in locations where it is 
not measured is essential. The variability and distribution of SND has 
been widely studied using empirical relationships, where the snow 
density is reproduced as a function of various variables such as air 
temperature, snow depth, SWE, among other predictors (e.g., Avanzi 
et al., 2015; Jonas et al., 2009; McCreight and Small, 2014; Mizukami 
and Perica, 2008). Most of such relations are acquired based on a 
particular area of study (Avanzi et al., 2015). Thus, it is essential to 
evaluate and compare the performance of various SND estimators, since 
a careful choice of SND equation is necessary for a reliable simulation of 
snow depth in a particular region (e.g., maritime regions vs. prairie 
regions). 

The overarching goal of this study is to provide an improved un-
derstanding of uncertainty associated with simulation and projection of 
snow depth and snowmelt dynamics in regional hydrological modelling 
under current and future climate conditions. To this end, we enable Soil 
and Water Assessment Tool (SWAT) with both TIM and EBM snowmelt 
modules and two different SND parametrizations, by modifying its 
source code, to comprehensively assess the model structural and para-
metric uncertainty. We utilize ANOVA to apportion the total uncertainty 
in snow depth projections into uncertainty arising from not only hy-
drological model structure (i.e., TIMs and EBMs), parameters, and input 
data, but also the choice of climate models and their structures, green-
house gas emission scenarios, and downscaling methods. The more 
specific objectives of this paper are threefold as it investigates: (1) the 
performance of EBM and TIMs, through examining spatiotemporal 
variability of snow depth and streamflow simulations in mountainous, 
foothill and plain areas by using a large snow-dominated watershed in 
Western Canada; (2) the spatiotemporal changes in cascade of uncer-
tainty associated with snow depth projections using EBMs and TIMs as 
snowmelt modules in regional hydrological modelling under different 
climate change models, RCP scenarios, and downscaling methods; and 
(3) the effect of SND formulation on the simulations and projections of 
snow depth and its impact on the projected cascade of uncertainty. 

2. Study area and data 

2.1. Study area 

North Saskatchewan River Basin (NSRB) is a large watershed with 
considerable variability in climate, topography, and land cover, located 
in the central area of Alberta, western Canada. The area of NSRB is 
59,128 km2, forming approximately 9% of landmass in the province of 
Alberta (North Saskatchewan Watershed Alliance, 2005). The NSRB 
originates from Columbia Icefields and the foothill regions of Rocky 
Mountains in the west of Alberta (Fig. 1a). The watershed is character-
ized by a diverse topography, with the elevation of NSRB ranging from 
3478 MASL on the mountainous region down to less than 500 MASL on 
the plain areas towards east of Alberta (Fig. 1b). The land cover changes 
from high mountains and icefields (i.e., mountain glaciers) in the west, 
to evergreen forests in the foothills, and urban and agricultural areas as 
well as pastures are among other land cover classes in the majority of the 
plain region in the east of the watershed (Fig. 1a). The historical climate 
data of NSRB for 1983–2007 shows a temperature range from less than 
− 30 ◦C in winters up to + 29 ◦C in summers for the watershed, and the 
average annual precipitation ranging from 760 mm year− 1 in moun-
tainous areas to 400 mm year− 1 on the plain region. Snowfall and snow 
cover dominate the watershed for at least five months of the year 
(Government of Canada, 2019). This suggests a noticeable variance of 
climate, topography and land cover in time and space throughout the 
NSRB. 

The NSRB is a major basin draining to the Saskatchewan River in 
Canadian Prairies that drains into the Hudson Bay and to Atlantic Ocean. 
An average value of 7000 million cubic meters of water is annually 
discharged from North Saskatchewan River (NSR) to the Saskatchewan 
River at the Alberta-Saskatchewan border on the east side of NSRB 
(Alberta Environment and Parks, 2019). The NSR also provides the 
drinking water for the urban areas within NSRB, including the city of 
Edmonton. Two hydro-electric dams named Bighorn and Brazeau Dams 
are located in the mountainous regions of NSRB, with an overall pro-
ductivity of 800,000 MWh year− 1 (MacDonald et al., 2012). Moreover, 
numerous small and large glaciers located in the Rocky Mountains are 
important contributors to the streamflow in the upstream tributaries of 
this river (Fig. 1a). 

2.2. Historical climate and geospatial data 

Historical climate data including daily precipitation, temperature, 
solar radiation, humidity, and wind speed were used from Faramarzi 
et al. (2015), who used a suit of four climate time series from local 
meteorological, gridded produscts, and satellite data at a provincial 
coverage to reproduce historical streamflow records by implementing a 

Fig. 1. Map of NSRB representing geographic distribution of (a) the main river basin, two main dams, hydrometric stations and land use-land cover classes; and (b) 
topographic range, weather stations, and the three hydrologic regions used for assessment of model results. 
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calibrated hydrologic model. Other data including vegetation cover, soil 
characteristics, operation of dams, and glacial maps and their daily time 
series were obtained from Faramarzi et al. (2017). In order to examine 
the effects of snowmelt simulation approaches (i.e., EBM and TIM) on 
streamflow dynamics in different regions of NSRB, six important hy-
drometric stations were considered for observing model performance 
and uncertainty analysis within different regions of this watershed. The 
locations and properties of these stations are shown in Fig. 1 and the 
details are provided in Table S2. Observed streamflow data for multiple 
hydrometric stations were collected from Environment and Climate 
Change Canada (Table S1). Finally, in order to assess the performance of 
snow depth simulations using the two EBM and TIM approaches, the 
simulated depth data were compared with the monthly gridded snow 
depth data acquired from Canadian Meteorological Centre (CMC) Daily 
Snow Depth Analysis Data, Version 1 (Brown and Bransnett, 2010). The 
monthly CMC snow depth data were available from January 1999 at a 
spatial resolution of 24 km × 24 km, and they were used to validate EBM 
and TIM simulations for 1999–2007 period. 

2.3. Future climate projection data 

To simulate future changes in the snow depth projections of NSRB, 
future climate projections from the Pacific Climate Impacts Consortium 
(PCIC) (Cannon, 2015) were used in this study. PCIC provides statisti-
cally downscaled GCM climate scenarios from 1950 to 2100 (Bürger 
et al., 2013) based on the Coupled Model Intercomparison Project phase 
5 (CMIP5) (Taylor et al., 2012) and the historical daily gridded climate 
data from NRCANmet (ANUSPLINE) for Canada (McKenney et al., 
2011). The choice of GCMs was based on climate models that resulted in 
the widest range of projected future climate for the Western North 
America region (Ammar et al., 2020; Cannon, 2015). On the other hand, 
the GCMs are forced with different Representative Concentration Path-
ways (RCPs), which define a specific emissions trajectory and subse-
quent radiative forcing in the earth-atmosphere system. Out of four 
pathways developed for the year of 2100, we chose RCP 2.6 and RCP 8.5 
(representing very low and very high forcing levels, respectively) to 
account for the widest range of projected radiative forcing (van Vuuren 
et al., 2011). PCIC provides Canada-wide downscaled climate change 
projections using the Bias Correction/Constructed Analogues with 
Quantile mapping reordering (BCCAQ) method (http://www.pacificcli 
mate.org/data). 

To test the effect of downscaling procedures on the future projections 
of snow depth, we used two different downscaled products. The first one 
is the aforementioned downscaled data from PCIC (named DS1 in 
Fig. 2). The second product is a set of further downscaled PCIC data to 
Alberta condition (named DS2, Fig. 2) based on daily historical climate 

data from earlier studies by Ammar et al. (2020) and Masud et al. 
(2018). In their study, historical climate data is from a study by Far-
amarzi et al. (2015), where a suite of four climate data sources including 
meteorological station-based and gridded products were examined to 
reproduce historical flow records for 130 gauging stations in Alberta by 
using a physically process-based hydrological model. A “combination” 
approach, where several climate data were combined from different 
sources, was found to be best in generating their corresponding 
streamflow. This historical climate dataset was later used in Ammar 
et al. (2020) and Masud et al. (2018) studies for a second-order bias- 
correction of the PCIC projections using a delta approach (Chen et al., 
2011a; Quilbé et al., 2008). In total, two emissions scenarios (i.e., RCP 
2.6 and RCP 8.5) in an ensemble of five GCMs (see Table S4) were 
incorporated for future projection of snow depth under two downscaling 
techniques, and a set of 1000 simulations generated using SWAT-EBM 
and SWAT-TIM based on the range of input parameters were sampled 
to run them for the 2040–2064 period (see section 3.4). 

3. Methodology 

3.1. Hydrologic model 

SWAT is a process-based, semi-distributed, eco-hydrological model 
which simulates various physical processes and their inter-connections 
on a daily basis (Arnold et al., 1998, 2012). Hydrological variables 
that are modelled in SWAT include streamflow, snow accumulation, 
snowmelt, infiltration, evapotranspiration, vegetation growth and can-
opy development, groundwater recharge and base flow, among others 
(Neitsch et al., 2011). SWAT has been previously applied to simulate 
snowmelt and snowpack in numerous studies (e.g., Debele et al., 2010; 
Fuka et al., 2012; Peak and Resort, 2010; Pradhanang et al., 2011; Qi 
et al., 2017; Troin et al., 2015b; Yang et al., 2014). Also, comparison of 
SWAT default snowmelt module (i.e., the TIM used in this study, see 
Section 3.2) show more reliable snowmelt modelling in comparison with 
several other snowmelt modules in the literature (Verdhen et al., 
2014b). Furthermore, several studies embedded EBMs into SWAT by 
modifying its source code, which resulted in equally reliable or better 
simulations of snowmelt dynamics (Debele et al., 2010; Qi et al., 2017; 
Verdhen et al., 2014b) than TIMs. 

In SWAT, a basin is divided into several sub-basins, which are in turn 
subdivided into Hydrological Response Units (HRUs) as the smallest 
hydrological units and characterized based on soil, landuse-land cover, 
slope and other geospatial features. Hydrological processes are then 
calculated at HRU scale, and can be aggregated at sub-basin and basin 
levels. In this study, we delineated a total of 174 sub-basins using a 200 
km2 threshold drainage area and a 90 m × 90 m DEM, as well as a pre- 

Fig. 2. Formation of SWAT models and cascades of uncertainty framework for snow depth projections. Simulations and uncertainty analysis are performed for 
mountainous, foothill and plain regions of the NSRB. 
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defined river network delineated previously based on a 10 m × 10 m 
DEM (Table S1). The 174 sub-basins were further delineated into 1639 
HRUs based on soil, landuse, and slop characteristics. The daily simu-
lation of snowmelt and snow depth was performed for each sub-basin. 
However, for demonstration and comparison of the model perfor-
mance in snow depth simulation in mountainous, foothill, and plain 
regions (Fig. 1b), the monthly sub-basin data were calculated and 
aggregated using a weighted average of sub-basins’ snow depth. 

3.2. Snowmelt simulation approaches 

We embeded two snowmelt simulation modules into SWAT2012 
model by modifying its source code, thereby producing what we refer to 
as the SWAT-TIM and SWAT-EBM models. The SWAT-TIM model used in 
this study is the SWAT built-in snowmelt module, while the SWAT-EBM 
is based on the energy balance scheme developed by U.S. Army Corps of 
Engineers (USACE, 1998). This formulation was also embedded in the 
SWAT2009 by Qi et al., (2017) for simulation of snowmelt in a small 
catchement. For the purpose of this study, we used a similar approach as 
Qi et al., (2017) and embedded the modified version of EBM in the 
SWAT2012 by modifying its source code. 

In the SWAT model, regardless of the snowmelt module used, the 
snowfall is stored at the ground surface in the form of snow pack. The 
amount of the stored snow pack is reported as SWE. The mass balance 
for the snow pack for day t is simulated as follows (Neitsch et al., 2011): 

SNOt = SNOt− 1 + SFt − Esub − SNOmlt (1)  

where SNOt is the water content of snow pack on the ground at the end 
of a given day (mm H2O), SNOt− 1 is the water content of snowpack on 
the ground at the end of the previous day (mm H2O), SFt is the total 
amount of snowfall within a given day (mm H2O), Esub is the amount of 
sublimation on a given day (mm H2O), and SNOmlt is the amount of 
snowmelt within a given day (mm H2O). SWAT considers the total 
precipitation for each day as snowfall if the air temperature is less than 
snowfall temperature (i.e., SFTMP, Table 1); otherwise, the whole pre-
cipitation is considered as rainfall. Also, the sublimation from the snow 
surface is calculated as a function of potential evapotranspiration of the 
given day. More information about the formulation of snowfall and 
snow sublimation can be found in Neitsch et al. (2011). 

In the following, the formulations and corresponding parameters of 
SWAT-TIM and SWAT-EBM are discussed. 

3.2.1. SWAT-TIM 
In TIMs, temperature is the main driver of snowmelt. The snowmelt 

simulation in SWAT is based on snow cover, melt factor, and tempera-
ture variables: 

SNOmlt = bmlt⋅snocov⋅
[

Tsnow + Tmx

2
− SMTMP

]

(2)  

where SNOmlt is the amount of snowmelt on a given day (mm H2O), bmlt 
is the melt factor of the day (mm H2O‧day− 1‧◦C− 1), snocov is the fraction 
of HRU area that is covered by snow, Tsnow is the snowpack temperature 
on a given day (◦C), Tmx is the maximum daily air temperature (◦C), and 
SMTMP is the threshold temperature at which the snowmelt will occur 
(◦C). The melt factor for snowmelt is a function of maximum and min-
imum melt factor of the year and the day of the year in order to account 
for daily and seasonal variability of snowmelt: 

bmlt =
SMFMX + SMFMN

2
+

SMFMX − SMFMN
2

⋅sin
(

2π
365

⋅(dn − 81)
)

(3)  

where SMFMX is the maximum melt factor of the year (mm H2O‧day− 1‧◦
C− 1); SMFMN is the minimum melt factor of the year (mm H2O‧day− 1‧◦
C− 1); and dn is the day number of the year, starting from January 1st 
(Neitsch et al., 2011). 

The temperature dynamics of snowpack is formulated as: 

Tsnow,t = Tsnow,t− 1⋅(1 − TIMP)+Ta⋅TIMP (4)  

where Tsnow,t is the snow pack temperature on a given day (◦C), Tsnow,t− 1 
is the snow pack temperature on the previous day (◦C), Ta is the average 
air temperature in that given day (◦C), and TIMP is the temperature lag 
factor in SWAT model (Neitsch et al., 2011). It should be noted that 
Equations (1) and (4) are included in both SWAT-TIM and SWAT-EBM 
formulations. 

In order to account for the spatial variability of snowmelt process 
within each sub-basin in our study, five elevation bands were applied to 
each sub-basin in SWAT model. The elevation bands divide sub-basins 
into different zones based on the elevation, thereby allowing the 
model to discretize the hydrological processes based on sub-basins 
topography (Pradhanang et al., 2011). SWAT defines the temperature 
and precipitation of each band using the following equations: 

PB = Pst +(ZB − Zst) × PLAPS × 10− 3 (5)  

TB = Tst +(ZB − Zst) × TLAPS × 10− 3 (6) 

where PB is precipitation at elevation band (mm), Pst is station pre-
cipitation (mm), ZB is midpoint elevation of band (m), Zst is station 
elevation (m), TB is temperature at elevation band (◦C), Tst is station 
temperature (◦C), PLAPS is precipitation lapse rate (mm/km) and TLAPS 
is temperature lapse rate (◦C/km) (Rahman et al., 2013). In this study, 
TLAPS values for each sub-basin were assumed to be between − 10 to 
0 ◦C /km, and PLAPS values were defined to vary in the range 0–250 

Table 1 
Parameters used in this study and their physically meaningful ranges for snowmelt modules in SWAT-TIM and SWAT-EBM approaches.  

Snowmelt module Parameter name Parameter description Range Reference 

SWAT-EBM and SWAT-TIM SFTMP Snowfall temperature (◦C) [− 5, 5] Neitsch et al. (2011) 
TIMP Snowpack temperature lag (◦C) [0, 1] 

SWAT-TIM TLAPS Temperature lapse ratio (◦C/km) [− 10, 0] Zhang et al. (2008); Anand et al. (2018) 
PLAPS Precipitation lapse ratio (mm)/km)  [0, 250] 
SMTMP Snowmelt temperature (◦C) [− 5, 5] Neitsch et al. (2011) 
SMFMX Maximum melt factor (◦C) [0, 10] 
SMFMN Minimum melt factor (◦C) [0, 10] 

SWAT-EBM ks1  melt coefficient parameter [0, 2] USACE (1998), Qi et al. (2017) 
kv1  Wind control parameter [0, 2] 
kv2  Vegetation surface dynamics parameter [1, 5] 
B Snow thermal quality [0.95, 0.97] Dingman (2015) 
ε  Snow emissivity [0.95, 0.99] 
α  Snow surface albedo [0.45, 0.85] 
Tss  Snow surface temperature (◦C) [− 10, 0] Negi et al. (2007); Singh et al. (2013); Jamieson and Schirmer (2016)  
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mm/km (Zhang et al., 2008; Anand et al., 2018). 
In order to compute SNOt using Equations (1) through (6), the five 

input parameters SMTMP, SMFMX, SMFMN, TLAPS and PLAPS need to 
be measured through empirical studies or calibrated. Table 1 shows the 
physically meaningful ranges assigned to these parameters for evalu-
ating the performance of SWAT-TIM in snow simulations. 

3.2.2. SWAT-EBM 
In EBMs, the energy used for snowmelt comes from various sources 

including shortwave (Qsh) and longwave (Ql) net radiation, latent (Qe)

and sensible (Qh) heat fluxes, ground heat flux (Qg), and the energy 
contained in the rainfall (Qp). Therefore, the total available energy for 
snowmelt (Qm) is expressed as below (all units in kJ.m− 2): 

Qm = Qsh +Ql +Qe +Qh +Qg +Qp − ΔQin (7)  

where ΔQinis the internal energy stored in snow, which includes changes 
in freeze and thaw processes, as well as snow temperature. This study 
adopted the snowmelt scheme suggested by USACE (1998) as a detailed 
and comprehensive EBM, which considers vegetation cover and rain-on- 
snow events in snowmelt modelling (Qi et al., 2017). In this snowmelt 
module, the amount of snowmelt for each energy component in Equa-
tion (7) is calculated as: 

Mj =
Qj

334.9⋅ρw⋅B
(8)  

where Mj is the snowmelt resulted from the jth component of energy in 
Equation (7), i.e., Qj (kJ.m− 2); 334.9 (kJ.kg− 1) is the latent heat of fusion 
of ice; ρw is the density of water (1000 kg.m− 3); and B is the thermal 
quality of snow or the fraction of ice in a unit mass of wet snow 
(0.95–0.97) (Gray and Landine, 1988). As a result, Equation (7) is re- 

written as: 

M = Msh +Ml +Me +Mh +Mg +Mp − Min (9)  

where M is the total daily snowmelt (mm), and the terms on the right 
side of Equation (9) are daily snowmelt values (mm) corresponded to 
energy sources described in Eq. (7). The USACE snowmelt module is 
dependent on different precipitation (i.e., rain-on-snow or rain-free) and 
vegetation (i.e., the value of Leaf Area Index, LAI) conditions (USACE, 
1998). The equations of melt components in Equation (9) along with 
related parameters and data used are described in detail in USACE 
(1998) and Qi et al. (2017). For the sake of brevity, Table S3 shows the 
equations for total daily snowmelt in mm (i.e., M in Eq. (9)) based on 
different vegetation and precipitation conditions. Numerous parameters 
and input data types are required to solve the equations listed in 
Table S3. Table 2 shows such data and assumptions used for calculating 
snowmelt in SWAT-EBM. The mathematical equations outlined in 
Table 2 are also functions of user-defined parameters, which intensifies 
the role of model parameters in uncertainties of snowmelt simulations. 
For the purpose of this study and to examine the effect of the parameter 
estimation of EBM and TIM in the cascade of uncertainty for future snow 
depth projections, we summarized in Table 1, the physically meaningful 
ranges for the parameters of the SWAT-TIM and SWAT-EBM. The ranges 
were defined based on experiments and field measurements found in 
various studies in the literature. It should be noted that the ranges of 
ks1,kv1 and kv2 were defined based on the meaningful ranges of ks and kv 
values reported in USACE (1998) (see Table 1 and Table 2 and for more 
details). As mentioned before, the snowfall temperature and snowpack 
temperature lag factor were implemented in both SWAT-TIM and SWAT- 
EBM snowmelt modules used in this study. 

Table 2 
Input data and parameters, formulations, and assumptions used in SWAT-EBM approach.  

Group Symbol Description Formulation 

Meteorological Cc  Cloud cover Cc = 1 − Rs/Rs,max  

hc  Cloud base height (m) hc = 121.92⋅(Ta − Td)

R  Rainfall (mm) Calculated by SWAT based on SFTMP 
Rs  Solar radiation (MJm− 2)  Input data to SWAT 

Rs,max  Daily maximum solar radiation (MJm− 2)  Calculated by SWAT 

RH  Relative humidity Input data to SWAT 
Ta  Average daily air temperature (◦C) Input data to SWAT 
Tc  Cloud base temperature (◦C) Tc = TLAPS⋅hc + Ta  

Td  Dew point temperature (◦C) Td = Ta − 0.2⋅(100 − RH)

TLAPS  Temperature lapse ratio (◦C/km) User defined 
v  Wind speed Input data to SWAT 

Geophysical kv  Wind coefficient kv = kv1/exp(kv2⋅LAI); kv is 1 for  
unforested plains and close to zero  
for heavily forested areas (USACE, 1998)  

kv1  Calibration parameter #1 for kv  User defined 
kv2  Calibration parameter #2 for kv  User defined 
LAI  Leaf Area Index Calculated by SWAT 
S  Average surface slope Calculated through GIS applications 
Sa  Average surface aspect (degree) Calculated through GIS applications 

Snowmelt α  Snow surface albedo User defined 
B  Snow thermal quality User defined 
ks  Shortwave melt coefficient ks = ks1⋅[1 + sin(π⋅(Sa − 90◦

) )S ]; ks usually  
varies between 0.9 and 1.1 (USACE, 1998)  

ks1  Calibration parameter for ks  User defined 
M  Total snowmelt (mm) Calculate through SWAT-EBM 
SNO  Snow water equivalent (mm H2O)  Calculated through SWAT-EBM 
Ts  Snowpack temperature (◦C) Calculated through Equation (4) 
Tss  Snow surface temperature User defined 
ε  Snow emissivity User defined  
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3.2.3. Snow density formulation 
As mentioned in previous sections, SWAT-TIM and SWAT-EBM 

calculate the amount of snowmelt and snow depth in the form of snow 
water equivalent (SWE). In order to compare SWAT results with 
observed snow depth data for model performance evaluation, the con-
version of SWE to snow depth is necessary, which is based on SND for-
mulations. In this study, we tested two SND formulations. The first 
formulation, which has already been evaluated on maritime regions of 
Canada (Qi et al., 2017), is referred to as SND1 in this study and is 
computed by: 

SNDt =

⎧
⎨

⎩

SNDt− 1 + ds∙(0.6 − SNDt− 1) no snow fall
0.1∙SFt/SNOt + SNDt− 1(SNOt − SFt)/(150∙SNOt) snow fall

SNDt− 1 + 0.5/exp(1/M) snow melt
(10)  

where SNDt is the snow density of the current day (g.cm− 3), SNDt− 1 is the 
snow density of the previous day (g.cm− 3), ds is the days since the last 
snowfall has happened (in days), and SFt is the snowfall of the given day. 

The second snow density formulation, which has been suggested by 
Pomeroy et al. (1998) for Canadian Prairies, is referred to as SND2 
hereafter and computed by: 

SNDt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.06792 + 0.05125∙exp
(

Ta

2.59

)

freshsnow

0.45 +
20.470

d

⎛

⎝1 − e− d
673

⎞

⎠agedsnow
(11)  

where Ta is the average temperature of a given day (◦C), and d is the 
snow depth (mm). Because the snow depth of the same day is not 
available in SWAT before snow density is calculated, it is assumed that 
the d in Eq. (11) is the snow depth of the previous day. Finally, the snow 
depth will be calculated as: 

Dt =
SNOt

SNDt
(12)  

where Dt is the snow depth for day t (mm), and SNDt is calculated 
through Eq. 10 or Eq. (11), known as SND1 and SND2, respectively. 

3.3. Performance assessment of SWAT-TIM and SWAT-EBM, and 
uncertainty analysis 

The examination of the performance of the SWAT-TIM and SWAT- 
EBM models in this study are based on their ability to reproduce his-
torical snow depth and streamflow data. The models were evaluated 
using monthly snow depth and streamflow measurements for the 
1999–2007 and 1986–2007 periods, respectively. The comparison an-
alyses were performed at both regional (i.e., the three regions of interest 
in this study including mountains, foothills, and plains) and local (i.e., 
174 sub-basins) scales for snow depth simulations, and at the six hy-
drometric station for streamflow predictions. The inclusion of stream-
flow analysis in the performance assessment is because of its sensitivity 
to snowmelt, especially during the melt season over the April-June 
period. It should be noted that the main goal of this study is not to 
develop a calibrated hydrological model based on the best performance 
of snow depth simulation by comparing TIMs and EBMs. Rather, our 
focus is to understand robustness in model structure and uncertainties 
associated with using TIMs and EBMs as snowmelt modules. Hence, the 
observed snow depth and streamflow data were used for comparison of 
modelling simulation using SWAT-TIM and SWAT-EBM, and no vali-
dation in terms of snow depth and streamflow was carried out in this 
study. For the same reason, we did not include other influential pa-
rameters on streamflow than snowmelt related parameters (see Table 1) 
in our parameterization and evaluation scheme, because we opted to 
study only the uncertainty arising from the TIM and EBM routines not 

other water balance routines in the SWAT model. Therefore, for any 
routines other than EBM and TIM within SWAT, we relied on the model 
default parameters, most of which were obtained from input data such 
as soil database, land-use database, DEM, climate, and other data used to 
setup the initial SWAT models. Moreover, the streamflow simulations 
when only snow-related parameters were perturbed help us characterize 
the performance of snowmelt approaches used in this study. 

Input parameters for both SWAT-TIM and SWAT-EBM were chosen 
based on the number of input parameters involved in TIM and EBM 
routines and used for snowmelt and snow depth simulations in the 
SWAT2012 source code (see Tables 1 and 2). For model runs and for the 
purpose of uncertainty analysis, we used the widest physically mean-
ingful range for each parameter that was found from literature (Table 1). 
Further, we used a Latin Hypercube Sampling Technique with the 
Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2015) to 
generate 1000 samples of parameter sets from these ranges, and fed 
them into the models to perform 1000 simulations for each model. For 
computational efficiency, we parallelized our simulations in a 200-core 
supercomputer using an algorithm that some authors of this study 
developed in earlier work (Du et al., 2020). 

To evaluate the goodness-of-fit of each SWAT run, the monthly 
observed and simulated snow depth were compared and evaluated using 
three widely-used criteria of efficiency, i.e., coefficient of determination 
(R2), Nash-Sutcliffe (NS), and bR2. While NS accounts for normalized 
variance of observed and simulated data, bR2 is a slope weighted coef-
ficient of determination that considers both under- or over-predictions 
(using the factor “b”) and dynamics (through R2) of data (Krause 
et al., 2005). Detailed formulation and their description of these criteria 
with relevant references are provided in Table S5. For comparison of 
observed and simulated values of snow depth, a sub-basin scale analysis 
and a regional analysis were performed. In sub-basin scale analysis, for 
uncertainty assessment of SWAT parameters in each sub-basin, the 
simulated data of sub-basins had to correspond to their closest gridded 
data points of observed snow depth. To do so, the observed snow depth 
for each sub-basin was assigned from the average of the CMC data points 
located within a 12-km (i.e., half of grid size) distance of each sub-basin 
border. After that, the simulated results and the assigned observed 
values of snow depth to each sub-basin were compared. For regional 
analysis, snow depth simulations for each sub-basin were weight- 
averaged over the area of the three regions of study (i.e., moun-
tainous, foothill or plain regions), where the weight of each sub-basin 
was its area; then, the weight-averaged snow depth was compared 
with average observed snow depth acquired from gridded data for the 
same region (see Fig. 1b). 

In addition to the efficiency criteria corresponding to the optimal 
parameter set among 1000 simulations in each model, we used two 
other statistical factors using SUFI-2, namely p-factor and r-factor for the 
analysis of model uncertainty. These two factors evaluate model un-
certainty arising from the parameter inputs, observed data, and model 
structure. The p-factor varies from 0 to 1 and it shows the percentage of 
measured data bracketed within the uncertainty band that is predicted 
by model in response to the range of parameters, e.g., 1000 samples of 
parameter set, provided as input. The uncertainty band in SUFI-2 is 
calculated as the 95 percent of the cumulative distribution of the 
simulated variables (Abbaspour, 2015), defined as 95 Percent Prediction 
Uncertainty (95PPU) hereafter. While the r-factor, which varies from 
0 to ∞, represents the width of the predicted uncertainty band. The ideal 
values for p-factor and r-factor are 1 and 0, however due to the uncer-
tainty related to data, model structure, and input parameters such values 
are not achievable in regional hydrological modeling. 

In this study, comparison and performance assessment of the SWAT- 
TIM and SWAT-EBM models were not only based on the best performing 
set of parameters from a total of 1000 simulations, but also uncertainty 
analysis based on p-factor and r-factor. It is suggested that for stream-
flow simulations, values between 0.6 and 0.8 for p-factor and values 
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around 1.0 for r-factor show a reasonable performance for streamflow 
simulation in areas at the scale of our study watershed (Abbaspour, 
2015). Overall, we performed a total of 80,000 simulations with 40,000 
for each of the SWAT-TIM and SWAT-EBM models (i.e., 40,000 = 1000 
parameter samples × 5 GCMs × 2 RCPs × 2 Downscaling techniques × 2 
SNDs), albeit by parallelizing in a 200-core computer (see Fig. 2). 

3.4. Uncertainty decomposition and spatiotemporal apportionment 

For quantifying the cascade of uncertainty associated with future 
projection of snow depth using SWAT-EBM and SWAT-TIM approaches, 
we used the ANOVA method, which has been successfully carried out in 
various studies, including hydrological studies (e.g., Déqué et al., 2007; 
Yip et al., 2011). The ANOVA method decomposes the projected vari-
ance and attributes its parts to different uncertainty sources and their 
interactions. In this study, the sources of uncertainty incorporated in 
ANOVA include hydrologic model parameterization (95PPU), GCMs, 
RCPs, and Downscaling methods (DS). According to the statistical theory 
of ANOVA, the total sum of squares (SST) is calculated as the sum of the 
variations resulting from each uncertainty source, and from their in-
teractions. As a result, the SST for this study is defined as (Wang et al., 
2018): 

SST = SSGCM + SSRCP + SSDS + SS95PPU + SSI (13)  

where SSGCM is the uncertainty share of GCMs, SSRCP is the uncertainty 
share of RCPs, SSDS is the uncertainty share of downscaling methods, 
SS95PPU is the uncertainty share of SWAT-EBM and SWAT-TIM model 
parameters, and SSI is the uncertainty resulting from interactions of 
uncertainty sources from all different combinations of two, three, and 
four variables (i.e., 95PPU, GCM, RCP, and DS): 

SSI =SSGCM*RCP + SSGCM*DS + SSGCM*95PPU + SSRCP*DS + SSRCP*95PPU

+ SSDS*95PPU + SSGCM*RCP*DS + SSGCM*RCP*95PPU + SSGCM*DS*95PPU

+ SSRCP*DS*95PPU + SSGCM*RCP*DS*95PPY

(14) 

SSI shows the interaction effect of uncertainty components on the 
variability of snow depth. Therefore, high contributions of SSI to un-
certainty cascade suggests non-additive effect of GCMs, RCPs, DSs, and 
95PPU on snow depth dynamics. For more details see Bosshard et al. 
(2013). 

In this study, a combination of 40 scenarios were applied to each of 
SWAT-TIM and SWAT-EBM in order to compare the share of uncertainty 
sources in the total cascade of uncertainty projection for snow depth 
projections (Fig. 2). The monthly variation of the cascade of uncertainty 
projections were projected across the study area and the results were 
discussed for the three main regions, i.e., mountains, foothills, and 
plains, over the study watershed. 

4. Results and discussion 

4.1. Model performance of snow depth simulations at sub-basin scale 

Fig. 3 shows the sub-basin scale results of snow depth simulations 
related to the four combinations of SWAT models (i.e., SWAT-TIM, 
SWAT-EBM, SND1, and SND2). Based on the results shown in Fig. 3a, 
the parameter ranges defined in both SWAT-TIM and SWAT-EBM had a 
moderate performance in reproducing observed snow depth data, 
although it is shown that SWAT-TIM was able to have a slightly higher 
value of average p-factor, therefore slightly better performance as 
compared to EBM, especially in plain areas. It is shown in Fig. 3a that the 
change of snow density formulation had a considerable effect on p-factor 
values, particularly in foothill and plain regions. It is however clear that 
none of snowmelt modules under either of the two snow density 

Fig. 3. Results of (a) p-factor, (b) r-factor and (c) best R2 calculated based on 1000 simulations of monthly snow depth using combinations of SWAT-EBM and SWAT- 
TIM with SND1 and SND2 for 1999–2007 period. 
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approaches had adequately reproduced historical snow depth in 
mountainous regions. The average p-factors shown in Table 3 and Fig. 3 
represent the lower level of performance for mountainous regions for 
any snow depth simulation approaches than the other two regions. This 
highlights the complexity of snow-related processes in mountainous 
regions, which is exacerbated by the lack of reliable and consistent 
climate data in such areas. The noticeable temporal gaps in precipitation 
time series, as well as their inadequate spatial coverage in mountainous 
regions are potentially a major reason for the poor performance of 
snowmelt modules to simulate snow depths in mountainous regions 
(Mizukami et al., 2014; Ul Islam and Déry, 2017). On the other hand, the 
spatial variability of temperature (which affects both SWAT-EBM and 
SWAT-TIM simulations), and solar radiation, wind speed and relative 
humidity (which affects SWAT-EBM simulations only), in mountainous 
regions is higher than that in foothill and plain regions. Therefore, the 
coarse spatial resolutions of such climate data compared to their actual 
topographic variability in mountainous regions (see Table S2) may be 
another reason for the low performance of SWAT-TIM and SWAT-EBM 
in simulating historical snow depth data in most of sub-basins within 
mountainous region (Comola et al., 2015; Helbig et al., 2015; DeBeer 

and Pomeroy, 2017). Another issue regarding the usage of gridded 
climate data is that the dependencies between important climate vari-
ables such as precipitation and temperature are not commonly main-
tained in gridded datasets, which might result in biases in reproducing 
hydrological responses such as snow accumulation and melt (Singh and 
Reza Najafi, 2020). It should be noted that temperature and precipita-
tion are the only climate input data used in both SWAT-TIM and SWAT- 
EBM. Therefore, the poor performance of both modules in mountainous 
regions (see Fig. 3 and Fig. 4) suggests the upmost importance of tem-
perature and precipitation data, rather than solar radiation, humidity 
and wind speed (which are inputs to SWAT-EBM only). 

Fig. 4 shows the variation of monthly p-factors of snow depth anal-
ysis based on different sub-basins within mountainous, foothill and plain 
regions. It is shown that in most of the months, the p-factors of sub- 
basins across mountainous regions had the largest variability 
compared to those of plain and foothill regions. Nevertheless, the 
average values of p-factor within mountainous regions were lower than 
those of foothill and plain regions (see Fig. 4 and Table 3). While none of 
the four model combinations shown in Fig. 4 can be presented as su-
perior to others in terms of reproducing historical snow depth, the 

Table 3 
Maximum, minimum, and average values of p-factors, r-factors and R2 for sub-basins within different regions of NSRB.   

SND1 SND2 

TIM EBM TIM EBM 

max min avg. max min avg. max min avg. max min avg. 

Mountains p  0.85  0.06  0.45  0.71  0.00  0.37  0.82  0.04  0.35  0.73  0.00  0.34 
r  12.8  0.16  2.07  42.7  0.15  6.09  71.1  0.09  9.12  138.5  0.40  20.28 
R2   0.76  0.08  0.39  0.75  0.09  0.40  0.77  0.18  0.49  0.75  0.09  0.40 

Foothills p  0.73  0.32  0.59  0.65  0.27  0.46  0.56  0.27  0.44  0.64  0.19  0.46 
r  0.63  0.21  0.43  0.78  0.17  0.38  0.47  0.05  0.20  2.15  0.45  1.06 
R2   0.78  0.09  0.45  0.70  0.12  0.45  0.77  0.14  0.46  0.70  0.12  0.45 

Plains p  0.75  0.14  0.60  0.73  0.08  0.47  0.58  0.17  0.46  0.71  0.14  0.45 
r  1.03  0.16  0.50  0.68  0.25  0.39  1.04  0.00  0.15  1.93  0.64  1.08 
R2   0.80  0.00  0.55  0.85  0.03  0.51  0.81  0.01  0.45  0.85  0.03  0.51  

Fig. 4. Monthly variation of the p-factor values within three regions of NSRB using four snow depth simulation approaches. The box plots show the range of p-factors 
obtained across sub-basins. 
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changes in p-factor ranges under different approaches were noticeable 
(e.g., changes from TIM-SND1 to TIM-SND2). It is also noteworthy that 
in Fig. 4, the variability of p-factor in foothill and plain regions during 
summer months was negligible, since foothill and plain areas of NSRB 
usually had minimum or no snow cover during summer. 

Overall, the high variability of p-factors using both TIM and EBM and 
under both SND1 and SND2 in mountainous region suggest unreliable 
snow depth simulation as a result of complex topography and lack of 
adequate and reliable climate datasets, even when a more comprehen-
sive model structure (e.g., EBM combinations) is utilized (Helbig et al., 
2015). 

Fig. 3b shows the r-factors corresponded to historical snow depth 
simulations of NSRB sub-basins. The high value of r-factor for several sub- 
basins in mountainous regions suggests that the effect of snow parame-
ters in simulating snow depth can be significant in mountainous regions 
with high topographic and climate variability. This can be particularly 
related to areas with complex and highly variable hydrology, as the 
average and maximum values of r-factor in the non-mountainous region 
is noticeably smaller than those within the mountainous region. It can be 
interpreted from Table 3 that the average values of r-factors in moun-
tainous regions were considerably greater than other areas, where the 
average p-factor values were less than those in other areas. These results 
are consistent with findings of Najafi and Moradkhani (2015). High r- 
factor and low p-factor in mountainous region implies that a larger un-
certainty is predicted in this area, where only small share of the historic 
data were reproduced using any of the two models under any of the SND 
combinations. Since EBMs are more physically-based approaches by 
definition than TIMs are, the poor performance of EBM models under any 
of the SND combinations are likely due to the poor quality of input data, i. 
e., spatiotemporal climate factors and input parameters used to run them. 
This suggests a clear need for enhancement of data collection and 
monitoring strategies within mountainous regions (Clow et al., 2012; 
Helbig et al., 2015; DeBeer and Pomeroy, 2017) than enhancement of the 
modelling approaches themselves. The uncertainty range (i.e., r-factor) 
of mountainous regions of EBMs in both SND1 and SND2 was higher than 
those in TIMs, suggesting that the effect of model parameterization on 
modelling uncertainty of snow depth simulations is intensified in com-
plex areas (i.e., mountainous regions in this study) (Ul Islam and Déry, 
2017). On the other hand, the r-factors of snow depth simulation in all 
regions under EBM-SND2 were increased compared to the r-factors 
related to EBM-SND1, with the highest level of difference within moun-
tainous regions (see Table 3). 

The additional modelling uncertainty resulting from using SND2 
instead of SND1 could be attributed to two factors: First, the major 
difference between SND1 and SND2 is significance of air temperature in 
SND2 formulation. According to Eq. (11), under fresh snow (i.e., 
snowfall) conditions, snow density is solely a function of current air 
temperature. On the other hand, under aged snow conditions, snow 
density is a function of snow depth of the previous day, a variable that is 
calculated based on the snow density of the previous day. As a result, the 
snow density under SND2 is a strong function of air temperature of a 
given day or its previous day(s). Therefore, it can be argued that 
incorporating air temperature factor in snow density estimation resulted 
in more uncertainty in snow depth simulations using SND2. Second, 
SND1 is mostly dependent on outputs of daily simulations of snowmelt 
modules such as SND of the previous day, snowfall, and days after last 
snow; on the other hand, SND2 contains more empirical parameters that 
are determined based on observed site data within Canadian Prairies 
(Pomeroy et al., 1998). Since such empirical parameters are not case- 
specific (e.g., they are not specific to NSRB), the SND2 may be less 
representative of physical processes in our study watershed. This might 
contribute to the higher uncertainty resulting from using SND2 as snow 
density function. 

Finally, our analysis of the R2 values corresponding to the best 
simulation results (out of 1000 model runs) is shown in Fig. 3c. An 
overview of the results from four different model-SND combination 

shows that, in general, the snow depth in sub-basins of plain areas were 
simulated properly, yet demanding improvements. Although some sub- 
basins in the plain region had the R2 of less than 0.4, most of the sub- 
basins showed a R2 value of 0.6 or above, which can be an indicator of 
a proper snowpack simulation in plain areas. The comparison of observed 
and simulated snow depth data in the foothill and mountainous regions, 
however, showed poorer results compared to those of plain regions. 
Although sporadic sub-basins with a proper R2 can be found in foothill 
and mountainous regions, most of the sub-basins showed the R2 value of 
less than 0.6. This can be due to the likely error inherent in the gridded 
snow depth data used for our comparison, as well as their coarse reso-
lution (i.e., 24 km × 24 km) for sub-basin-based comparison (Vaughan, 
2013; Helbig et al., 2015). In other words, the comparison of simulated 
and observed data for sub-basins was based on assigning the historical 
data from coarse resolution grid points to each sub-basins. Hence, the 
spatial heterogeneity of historical snow depth are under-represented at 
the sub-basin scale. For the same reason, we are not presenting NS and 
bR2 results of snow depth simulation, since they provide more detailed 
comparison of the simulated versus observed data, which require a 
higher resolution measurements for a direct and comprehensive assess-
ment. Furthermore, the lack of time-series data for precipitation in re-
gions with high variability in topography and climate such as west side of 
NSRB resulted in a poorer model performance (Mizukami et al., 2014; Ul 
Islam and Déry, 2017). Consequently, presentation of comparison results 
at a regional-scale in our study would give more reliable insights than 
those of sub-basin scale. 

4.2. Effect of snow density formulation on model performance at regional 
scale 

The results in this section reveal the effect of snow density formu-
lation on performance and uncertainty associated with simulations and 
projections of snow depth. The results of the best model runs out of 1000 
simulations for various regions, snowmelt approaches (EBM, TIM), and 
snow depth approaches (SND1 and SND2) are shown in Fig. 5 and 
Table S6. As shown in Fig. 5a, when using SND1, neither the SWAT-TIM 
(with an average NS, bR2, and R2 of 0.45, 0.19, 0.65) nor the SWAT-EBM 
(NS, bR2, and R2 of 0.51, 0.23, 0.66) could reliably simulate the dy-
namics and magnitudes of regional snow depth within the mountainous 
regions of NSRB. However, by implementing SND2, which is an 
empirical formulation specifically meant for Canadian Prairies (Pom-
eroy et al., 1998), a considerable improvement in simulation of regional 
snow depth in both SWAT-TIM (with an average NS, bR2, and R2 of 0.79, 
0.58, 0.80) and SWAT-EBM (NS, bR2, and R2 of 0.25, 0.69, 0.78) can be 
seen. Comparison of Fig. 5a with Fig. 5b and 5c reveals that the proper 
formulation of snow density function plays an important role in quan-
tifying snow depth, particularly in mountainous regions (Sturm et al., 
2010; Bormann et al., 2013). In fact, higher variability of snow depth 
within mountainous regions along with high variability of temperature 
might be the reason why the snow depth in such regions is more sensi-
tive to definition of snow density formulations. Results of daily snow 
density over the simulation period (1983–2007) for all sub-basins show 
an average of 275 kg/m3 with standard deviation of 169 kg/m3 for 
SND1, and an average of 154 kg/m3 with standard deviation of 91 kg/m3 

for SND2. This shows variable results for snow density in different times 
and locations. Estimations from SND1 are higher than observed snow 
density values in Alberta (Pavlovskii et al., 2019), and also in Canadian 
Prairies, especially for fresh snow events (Pomeroy and Brun, 2001; 
Pomeroy et al., 1998). On the other hand, the performance of SWAT-TIM 
and SWAT-EBM under SND1 and SND2 in snow depth simulation within 
foothills and plains were nearly the same. Nevertheless, it is detected 
that SWAT-EBM-SND2, which is known to be more physically based and 
robust in snow depth simulation, mostly overestimated the snow depth 
in all the regions within NSRB. The overestimation of snow depth can be 
a result of overestimation of SWE, underestimation of snow density, or a 
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Fig. 5. Comparison of the best simulated (i.e., best results out of 1000 SWAT simulations) snow depth (red) with observed (blue) data in (a) mountainous, (b) foothill 
and (c) plain regions for the 1999–2007 period. 

Fig. 6. Comparison of monthly observed (blue), best simulated (red), and 95PPU (green band) streamflow for 1986–2007 period using SWAT-EBM (left column) and 
SWAT-TIM (right column). 95PPU: 95 percent prediction uncertainty. 

M. Zaremehrjardy et al.                                                                                                                                                                                                                       



Journal of Hydrology 598 (2021) 125735

12

combination of those. It can be seen in Fig. 6 (Section 4.3) that EBMs 
have overestimated streamflow on the main tributary of NSR, which can 
be partially inter-related to overestimation of SWE in such areas and 
their upstream regions. 

4.3. Assessment of SWAT-TIM and SWAT-EBM in reproducing 
streamflow 

Since streamflow is a function of snowmelt in terms of SWE (rather 
than snow depth), SWE is independent from SND approaches used. 
Hence, streamflow reproduction results in this section are reported in 
terms of SWAT-TIM and SWAT-EBM approaches, because using SND1 or 
SND2 has no effect on streamflow values. The streamflow simulation 
using 1000 parameter set samples in SWAT-EBM and SWAT-TIM shows 
that in the upstream stations (see Fig. 1 and Table S1), representing 
Mountainous region, with p-factors of 0.57 and 0.33 for stations #1 and 
#2 respectively, the SWAT-EBM performed slightly better than SWAT- 
TIM with p-factor of 0.40 and 0.16 for stations #1 and #2, respec-
tively (Table 4). In terms of NS and bR2 SWAT-EBM with NS of 0.66 and 
bR2 of 0.42 performed slightly better than SWAT-TIM with NS of 0.59 
and bR2 of 0.34 in station #1; however, the performance of SWAT-TIM 
was much better in station #2, with NS of 0.23 and bR2 of 0.27 for 
SWAT-TIM as compared to NS of − 1.43 and bR2 of 0.05 from SWAT- 
EBM simulations (see Table 4). On the other hand, SWAT-TIM had 
performed marginally better in simulating streamflow data within 
downstream hydrometric stations. Comparisons of the r-factor, NS and 
bR2 shows relatively close values for SWAT-TIM and SWAT-EBM within 
both mountainous and plain regions, suggesting that the performance of 
TIM and EBM within a large watershed with diverse hydro-climate and 
topographic conditions was relatively similar in simulating the stream-
flow dynamics. These results are in line with previous studies on com-
parison of TIMs and EBMs for streamflow simulations (Franz et al., 2008; 
Zhang et al., 2008; Zeinivand and De Smedt, 2009; Debele et al., 2010; 
Meng et al., 2017). One important point, however, is the low values of 
NS of SWAT-EBM in most of the hydrometric stations. It is found in the 
literature that the EBMs might overestimate the streamflow due to 
overestimation of mid-winter SWE (Franz et al., 2008). As it can be 
found from the comparison of EBM and TIM in Fig. 6, the best per-
forming simulation results of EBM, out of 1000 simulations, was yet 
overestimating the peak flows, resulting in low values of NS, which 
highlighted the constant overestimation of the flow (Krause et al., 2005, 
see Table 4). It is noteworthy that the streamflow simulations are based 
on best-fitting snow parameters only, and the other parameters related 
to soil, groundwater, and runoff that are sensitive to streamflow can be 
adjusted in order to change the simulated streamflow results in Fig. 6, 
which is beyond the scope of this study. Nevertheless, the over-
estimation of peak flow resulting from using SWAT-EBM is noticeable (i. 
e., within hundreds of cubic meter per second), which might not be 
rectified by logical adjustment of other SWAT parameters. As a result, 

the potential overestimation of streamflow through using EBMs should 
be taken into account in hydrological studies such as analyzing extreme 
conditions (i.e., floods and droughts) throughout regional studies. 

4.4. Evaluation of uncertainty sources in the cascade of uncertainty 
projection 

The average monthly results of uncertainty decomposition for snow 
depth projection in mountainous, foothill, and plain regions are shown 
in Fig. 7. Also, the annual average values of contributions of different 
uncertainty sources for the same regions is outlined in Table S7. It can be 
seen from the figures that the share of parameter uncertainty within all 
regions of NSRB is considerable, although holding different values in 
different regions and times. A general comparison of cascades of un-
certainty of mountainous, foothill, and plain regions based on Fig. 7 and 
Table S7 shows that 95PPU arising from SWAT-EBM and SWAT-TIM 
holds the largest share of uncertainty in mountainous regions, 
compared to foothill and plain regions. This uncertainty range was 
resulted from 1000 set of parameter combination sampled from a 
physically meaningful range defined from literature (see Table 1). This 
suggest the importance of model parameterization and the input data in 
complex regions for snow depth simulations and projections (Mizukami 
et al., 2014; Ul Islam and Déry, 2017). As we move from mountainous to 
foothill and plain regions, the average annual share of parameter un-
certainty becomes less than that of mountainous regions as the share of 
annual PPU, under NSD2, changes from 75.4% and 57.0% for EBM and 
TIM, respectively in mountainous to 57.8% and 42.1% in foothill, and to 
59%, and 27.5% in plain region, respectively (see Table S7). In the 
Mountainous region and under SND1 and SND2 formulations, both 
SWAT-TIM and SWAT-EBM showed a relatively similar trend in sharing 
the formation of cascade of uncertainty. The average value of 95PPU 
contribution to cascade of uncertainty for EBM-SND1, TIM-SND1 and 
TIM-SND2 ranges between 55% and 60%, presenting a relatively similar 
behavior of parameter uncertainty within these approaches. The 
average parameter uncertainty from EBM-SND2, however, is 75%, 
which suggests the noticeable effect of snow density approach in the 
formation of cascade of uncertainty in EBM model. EBM-SND2 also 
holds the largest share of parameter uncertainty for foothill and plain 
regions. It is also shown in Fig. 7a that the share of parameter uncer-
tainty decreased in warmer seasons (i.e., May to August). This indicates 
that as the weather gets warmer in mountainous regions, the effect of 
various GCMs, RCPs, downscaling methods and their interactions on 
snow depth projections increased, since they directly affect the precip-
itation, air temperature and solar radiation, which are major drivers of 
snowmelt and snow depth, therefore forcing a larger variation in pro-
jection of snowfall and therefore snow depth than hydrologic model 
parameters. On the other hand, snowfall events are less frequent in 
warm seasons (MacDonald et al., 2012), which makes the effect of 
snowmelt parameters within EBM and TIM less than those for colder 

Table 4 
Performance of average monthly streamflow simulation for SWAT-TIM and SWAT-EBM for 1986–2007.  

Region Station ID (Table S2) Snowmelt module p-factor r-factor R2 NS bR2 

Mountains 1 EBM  0.57  0.16  0.72  0.66  0.42 
TIM  0.40  0.13  0.69  0.59  0.34 

2 EBM  0.33  0.82  0.10  − 1.43  0.05 
TIM  0.16  0.17  0.41  0.23  0.27 

Foothills 3 EBM  0.14  0.93  0.14  − 3.74  0.13  
TIM  0.08  0.28  0.18  − 1.70  0.13 

4 EBM  0.34  0.76  0.21  − 1.22  0.14  
TIM  0.40  0.39  0.39  0.34  0.21 

Plains 5 EBM  0.23  0.49  0.57  − 0.65  0.47 
TIM  0.36  0.46  0.66  0.44  0.56 

6 EBM  0.29  0.72  0.61  − 2.04  0.40 
TIM  0.36  0.78  0.57  − 0.10  0.52  
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seasons. As a result, the effect of GCMs, RCPs, downscaling methods and 
their interactions was increased in warm seasons. In colder seasons, 
however, GCMs, RCPs, downscaling methods and their interactions had 
less contribution to the cascade of uncertainty in mountainous regions, 
possibly because temperature variability is less effective of snow 

formation in cold seasons. In cold seasons, the air temperature within 
mountainous regions are well below freezing point; therefore, the 
variability of temperature among various GCMs, RCPs and downscaling 
methods does not effect the conversion of precipitation to snowfall or 
rainfall. Because of that, EBM and TIM parameter uncertainty controls 

Fig. 7. Variance decomposition of the uncertainty in snow depth projection within (a) mountainous, (b) foothill, and (c) plain regions throughout NSRB using SWAT- 
TIM and SWAT-EBM under SND1 and SND2 for future climate (2040–2064). Note: diagonal lines indicate times when snow depth is meager and 95PPU numerically 
gains maximum share in ANOVA analysis. 
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most of the uncertainty associated with snow depth simulations in these 
months than the GCMs, RCPs, and DS. As the study region changes from 
mountainous areas to foothill and plain regions, the share of different 
uncertainty sources varies for different months. The comparison of 
Fig. 7a, b and c shows that by shifting from mountainous to plain re-
gions, the contribution of parameter uncertainty to cascade of uncer-
tainty decreased, while other sources of uncertainty contributed more to 
the overall uncertainty of snow depth projections. In particular, the 
contribution of GCM to the uncertainty cascade increased from moun-
tainous region to foothill and plain regions. This is an interesting finding 
as it provides insight into the conflicting assessments in the literature 
with some studies concluded GCMs as the largest contributor to the 
uncertainty projection (Prudhomme and Davies, 2009; Vetter et al., 
2017) and others introduced emission scenarios (Vetter et al., 2015), 
and fewer studies underscored the effects of hydrologic models (Ashraf 
Vaghefi et al., 2019) in the cascade of uncertainty projections. Our study 
provides a comprehensive assessment of all contributing factors across 
spatial and temporal scales and under diverse hydro-climatic and 
topographic conditions, and it describes how changes from mountainous 
to plain regions result in different pattern in the share of uncertainty 
contribution. Same as warm months within mountainous regions, the 
increased share of GCM uncertainty in foothill and plain regions in 
comparison with mountainous regions might be partially related to the 
effect of air temperature on considering precipitation as snowfall or 
rainfall in SWAT model (see Section 3.2). Furthermore, since the 
parameter uncertainty had decreased from mountainous to foothill and 
plain regions (Fig. 7), this mathematically resulted in the share of other 
uncertainty sources to increase, which is possibly one other reason for 
the increase of GCM contribution to uncertainty cascades in foothill and 
plain regions. The contribution of interactions of different uncertainty 
sources is the second most important contributor to the cascade of un-
certainty of mountainous regions and among the largest contributors in 
foothill and plain regions, suggesting the non-linear effect of uncertainty 
sources on snow depth projections (Chawla and Mujumdar, 2018). 

Another important point to mention is related to the contribution of 
model parameter uncertainty to the cascade of uncertainty within plain 
regions in warm months (i.e., May to August), which is close to 100%, 
while this contribution is much lower in other months of the year 
(Fig. 7c). The large contribution of model parameters to the cascade of 
uncertainty in warmer months is due to the high temperature of plain 
regions in warm months. The temperature of this region is significantly 
higher than the snowfall temperature (especially in June, July and 
August), which makes the snowfall to rarely happen, therefore resulting 
in a zero contribution of GCM, RCP, and DS. On the other hand, the 
amount of snow depth in warm months is almost zero, as almost all the 
snow depth has been melted throughout the spring (e.g., April and May). 
As a result, a meager change in snow depth simulation right before or 
during the warm months will numerically result in a large variance 
calculation for the 95PPU, using ANOVA method, as compared to the 
small value of snow depth. As presented with diagonal lines in Fig. 7c, 
due to the zero share of GCM, RCP, and DS during warm months in plain 
region, the 95PPU gained the maximum share of the uncertainty despite 
its negligible variation due to the parameter uncertainty. 

5. Conclusion, study limitations, and future directions 

Snowmelt and snow depth processes are among the most significant 
hydrological processes in most of high elevation watersheds in the 
northern latitudes and mountainous watersheds with cold hydrology. 
However, the contribution of uncertainty due to the use of Temperature 
Index Modules (TIMs) and Energy Balance Modules (EBMs) in projection 
of snowmelt and snow depth in regional studies is poorly understood. 
We implemented the ANOVA uncertainty decomposition approaches, 
where a process-based TIM and EBM snowmelt routines, as well as two 
different snow density modules were coupled within the Soil and Water 
Assessment Tool (SWAT) source code and future projections were 

performed based on an ensemble climate datasets of five GCMs, under 
the two future scenarios of RCP 2.6 and RCP 8.5 and using two down-
scaling approaches. This allowed spatiotemporal assessment of the un-
certainty projections of snowmelt and snow depth across heterogeneous 
landscapes, from mountainous and foothill to plain areas using a large 
river basin in Alberta, western Canada as the study region. The main 
conclusions of this study are: 

1. The performance of EBM and TIM approaches in simulating snow-
melt and snow depth is different across scales and time; therefore, 
conclusions from a small-scale study with a homogeneous landscape 
and hydro-climate condition cannot be generalized to a regional 
scale and for a longer period of time.  

2. While the performances of EBM and TIM were relatively similar in 
mountainous regions and both produced a relatively large uncer-
tainty, the spatiotemporal analysis of the p-factor, r-factor, NSE, bR2, 
and R2 indicated that SWAT-TIM performed better in foothill and 
plain regions as compared to the SWAT-EBM combinations and the 
SWAT-EBM approach overestimated streamflow in most regions and 
snow depth in all the regions within the study watershed.  

3. While snowmelt simulation modules are key in hydrologic modelling 
of snow dominated regions, the performance of the models in snow 
depth simulations is more dependent on the formulation of snow 
density simulation, rather than using TIM or EBM. This highlights the 
importance of the selection of a proper snow density (SND) approach 
in accordance with the study area and climatic conditions.  

4. All EBM, TIM, SND1, and SND2 model combinations predicted larger 
uncertainty in simulation of snow depth and streamflow in the 
mountainous regions as compared to foothill and plain areas. Since 
EBMs are a more physically-based approach by definition than TIMs, 
the poor performance of SWAT-EBM model under any of the SND 
combinations are likely due to the poor quality of input data, i.e., 
spatiotemporal climate factors and input parameters used to run 
them. This observation suggests a clear need for enhancement of data 
collection and monitoring strategies within mountainous regions.  

5. The analysis of the cascade of uncertainty for future snow depth 
simulation indicated that the share of uncertainty from different 
sources varies over time and across regions. While the share of un-
certainty was dominated by EBM and TIM parameterization in the 
highland areas and in cold months, it was conquered by the GCMs, 
RCPs, and DS in lower elevation foothill and plain areas. The share of 
uncertainty was also affected by the choice of snow density 
approach, and the SWAT-EBM-SN2 modeling approach resulted in a 
larger share of uncertainty in future snow depth projection, due to a 
more physically-based nature of the model combination, as 
compared to all other model combinations.  

6. The larger share of parameter uncertainty in cold months is related to 
the air temperature that are well below freezing point making the 
variability of temperature among various GCMs, RCPs and down-
scaling methods ineffective in the conversion of precipitation to 
snowfall or rainfall in the mountainous regions, while the larger 
parameter uncertainty in warm months in the plain regions is related 
to a significantly higher than the snowfall temperature, which makes 
the snowfall to rarely happen, therefore resulting in a zero contri-
bution of GCM, RCP, and DS and numerically allocating a large un-
certainty share to the parameters. 

This research facilitates better understanding of the performance and 
uncertainties associated with the projection of snowmelt and snow 
depth using EBM and TIM approaches in regional studies, where hydro- 
climate and geospatial features vary across regions and times. It also 
demonstrates that a multi-scale and temporal analysis is needed for 
understanding the cascade of uncertainties in future snowmelt and snow 
depth simulations. Our study underscores the importance of the input 
climate data in simulation of hydrological processes in the high eleva-
tion areas that is likely more significant than the choice of model 
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structure and process representation. Furthermore, regional station- 
based observed data do not represent the average snow depth within a 
large region of study (i.e., with scales of hundreds of square kilometers), 
a fact that highlights the need of proper spatial gridded data for com-
parison of snow depth simulations. On the other hand, the gridded data 
of historical snow depth or SWE within Canadian Prairies are scarce, and 
it is difficult to acquire proper gridded data for snow depth at a fine 
spatial resolution. Hence, any improvement in historical climate data 
such as precipitation and temperature, as well as historical snow depth 
data can result in an improved quality of snowmelt and snow depth 
analysis within large regions. Such improvements may also change the 
spatiotemporal patterns of uncertainty sources in snow depth pro-
jections, possibly as a result of more reliable data in regions with com-
plex hydrology. Therefore, we suggest these analysis to be applied on 
other study regions with a rich climate data status, in order to examine 
the importance of input climate data in simulations and projections of 
snowmelt and/or snow depth. 

It is worth mentioning that our analysis of the cascade of uncertainty 
was performed for future snow depth projections. A more comprehen-
sive uncertainty analyses for hydrologic water balance components and 
streamflow can provide more insights about the uncertainty decompo-
sition across study area. In addition, future projections in our study did 
not simulate operation of reservoirs in the future and it considered daily 
historical outflow of the two main dams in the study watershed. 
Although it did not affect our uncertainty analyses of the snow depth and 
snowmelt projections in this study, and since simulation of reservoir 
operations was beyond the scope of this study, a realistic reflection of 
future management and decisions on operation of dams and reservoirs in 
the hydrologic model can add another layer of uncertainty which can be 
studied for a more comprehensive assessment of the uncertainty in 
streamflow and hydrologic simulations. 

Moreover, while our results suggested that the uncertainties in EBM 
and TIM can dominate the overall uncertainties, a more robust analyses 
of uncertainty decomposition by considering more members of GCMs 
and RCPs and DS techniques, as well as examining other EBM and TIM 
approaches used in literature can provide more improved understanding 
of the cascade of uncertainty. Furthermore, the performance and un-
certainty of applying different SND approaches can be examined by (1) 
applying other widely-used SND functions to the appropriate study re-
gion; and (2) refining suitable SND equations through optimizing and re- 
adjusting their empirical parameters based on the observed data from 
the study region. 
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